Math, asked by shashank981, 1 year ago

if alpha and beta are the zeroes of the quadratic polynomial p(x)=4x^2-5x-1,find the value of alpha^2×beta+alpha×beta^2

Attachments:

Answers

Answered by RavindraShah
5
firstly solve it by middle term splitting method then in the expression of alpha2beta+alphabeta2 take alpha and beta as common
Answered by Anonymous
18

\bf{\underline{\underline{Question:-}}}

\sf if\: \alpha,\beta \:are\:the\:zeroes\:of\:a\: Quadratic\: polynomial

\sf \:f(x) = 4x^2-5x-1, \:Find\:the\:value\:of\: \alpha^2\beta +\alpha \beta^2

\bf{\underline{\underline{Given:-}}}

  • \sf Zeroes\:of\:the\: polynomial\: are\: \alpha,\beta
  • \sf f(x) = 4x^2-5x-1

\bf{\underline{\underline{To\: Find:-}}}

  • \sf Find\:the\:value\:of\: \alpha^2\beta +\alpha \beta^2

\bf{\underline{\underline{Solution:-}}}

\sf f(x) = 4x^2-5x-1

Here,

  • a = 4
  • b = -5
  • c = -1

\sf → \alpha+\beta=\dfrac{-b}{a}

\sf → \alpha+\beta = -( \dfrac{-5}{4})

\sf→ \alpha+\beta = \dfrac{5}{4}

Now,

\sf →\alpha^2\beta+\alpha\beta^2=\alpha\beta(\alpha+\beta)

\sf → \dfrac{-1}{4}×\dfrac{5}{4}

\sf → \dfrac{-5}{16}

\bf{\underline{\underline{Hence:-}}}

  • \sf The\: Required\:value\:of \alpha^2\beta+\alpha\beta^2\:is\: \dfrac{-5}{16}
Similar questions