Math, asked by shraddhamahankar4, 3 months ago

if Alpha and beta are the zeroes of the quadratic polynomial p(x)=6x²-7x+12, find a quadratic polynomial whose zeroes are 1/aplha and 1/beta​

Answers

Answered by ItzRockingPrincess
6

We are given that  \alpha and  \beta are the zeroes of the quadratic polynomial p(x) = 6x² - 7x + 12

6x² - 7x + 12

\longrightarrow a = 6, b = (- 7), c = 12

Sum of zeroes = \sf{ \bf{  \dfrac{- b}{a}}}

 \longrightarrow \: \sf{ \alpha  +  \beta  =   \dfrac{-( - 7)}{6}}

 \longrightarrow \: \sf{ \alpha  +  \beta  =   \dfrac{ 7}{6}}

Product of zeroes = \sf{ \bf{  \dfrac{c}{a}}}

 \longrightarrow \: \sf{ \alpha   \times   \beta  =   \dfrac{12}{6}}

 \longrightarrow \: \sf{ \alpha   \times   \beta  =  2}

To Find :

  • The quadratic polynomial whose zeroes are \dfrac{1}{\alpha} and \dfrac{1}{\beta}

Sum of zeroes :

 \sf{\dfrac{1}{\alpha} +  \dfrac{1}{\beta}  =  \dfrac{ \beta +  \alpha}{ \alpha \beta} =  \dfrac{ \frac{7}{6} }{2} =  \dfrac{7}{12}}

Product of zeroes :

 \sf{\dfrac{1}{\alpha}  \times   \dfrac{1}{\beta}  =  \dfrac{ 1}{ \alpha \beta} =  \dfrac{ 1}{2}}

As we know : P(x) = x² - (sum of zeroes)x + (product of zeroes)

Required Polynomial = x² - \dfrac{7}{12}x + \dfrac{1}{2}

Similar questions