Math, asked by aarshia18singh, 1 year ago

if alpha and beta are the zeroes of the quadratic polynomial f(x) = x^2-5x+4 find a^2+b^2

Answers

Answered by anshikakesari
2

p(x)= x^2 - 5x +4

Sum of zeroes = -b/a

(a + b) = - (-5)

=5

Product of zeroes = c/a

ab =4

=a^2 + b^2

= (a + b) ^2 -2ab

= (5)^2 - 2(4)

= 25 - 8

=17


anshikakesari: what is your name
anshikakesari: anshika
anshikakesari: sry I have to study bye because tomorrow is my board exams
anshikakesari: ok
Answered by Anika186
6

since \:  \alpha  \: and \:  \beta  \: are \: the \: zeros \: of \: the \: given \: p(x)

Sum of zeros = -b/a

 \alpha  +  \beta  =  -  \frac{ - 5}{1}

 \alpha  +  \beta  =  5

Product of zeros = c/a

 \alpha  \beta  =    \frac{4}{1}

 \alpha  \beta  = 4

Now,

using \: (a + b)^{2}  =  {a}^{2} +  {b}^{2}   + 2ab

 (\alpha  +  \beta )^{2}  =  \alpha ^{2}  +  { \beta  + 2 \alpha  \beta }^{2}

 {5}^{2}  =  { \alpha }^{2}   + { \beta }^{2}  + 2 \times 4

25 =  { \alpha }^{2}  +  { \beta }^{2}  + 8

 { \alpha }^{2} +  { \beta }^{2}   = 25 - 8

 { \alpha }^{2}  +  { \beta }^{2}  = 17


loveyou22: ohk
loveyou22: or batao
Anika186: kya?
loveyou22: kuch b
Anika186: ????
loveyou22: apna bara ma batao
Anika186: kya batau?
Anika186: 10th ki student hu
loveyou22: ohk nice
loveyou22: hy
Similar questions