Math, asked by geniusgirl90, 1 month ago

If alpha and beta are the zeroes of the x²-x-4, then find out the value of one upon alpha plus one upon beta minus alpha multiply by beta​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {x}^{2} - x - 4

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{ - 4}{1}  =  - 4

and

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha +   \beta  =  -  \: \dfrac{( - 1)}{1}  = 1

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }  -  \alpha  \beta

\rm \:  =  \:\dfrac{ \beta  +  \alpha }{ \alpha  \beta }  - ( - 4)

\rm \:  =  \:\dfrac{1}{ - 4}  + 4

\rm \:  =   - \:\dfrac{1}{ 4}  + 4

\rm \:  =  \:\dfrac{ - 1 + 16}{ 4}

\rm \:  =  \:\dfrac{15}{ 4}

Hence,

\rm :\longmapsto\: \boxed{ \bf{ \: \dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }  -  \alpha  \beta  =  \frac{15}{4}}}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Answered by anjelinadebbarma1
2

Answer:

Ahh... miss did we talk before... ah I forgot -_-||

Sorry for that... are u a K-pop fan or an anime fan

( ̄3 ̄)

Similar questions