Math, asked by gayatri7939, 8 months ago

if alpha and beta are the zeroes of x2+3x-10, find the polynomial of whose zeroes are 2 alpha and 2 beta​

Answers

Answered by vasundharapawar
0

Step-by-step explanation:

see that answer.......

Attachments:
Answered by MaIeficent
3

Step-by-step explanation:

\bf\underline{\underline{\red{Given:-}}}

  •  \rm \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \:  \:  {x}^{2}  + 3x - 10

\bf\underline{\underline{\blue{To\:Find:-}}}

  • \rm The \: polynomial \: whose \: zeroes \: are \: 2 \alpha  \:  \: and \:  \: 2 \beta

\bf\underline{\underline{\green{Solution:-}}}

\rm Given \: polynomial:- \:  {x}^{2}  + 3x - 10

\rm For \: a \: polynomial \:  {ax}^{2}  + bx  + c

\rm Sum \: of \: zeroes =  \dfrac{ - b}{ \: a}

\rm Product\: of \: zeroes =  \dfrac{c}{ \: a}

\rm In \:  {x}^{2} + 3x - 10

    \leadsto \rm a = 1 \: , \: b = 3 \:  \: and \:  \: c =  - 10

   \leadsto \rm zeroes =  \alpha  \:  \: and \:  \:  \beta

\rm Now:-

   \rm Sum \: of \: zeroes \: (\alpha   +  \beta  ) =  \dfrac{ - b}{a} =  \dfrac{ - 3}{1} =  - 3

   \rm Product\: of \: zeroes \: (\alpha     \beta  ) =  \dfrac{ c}{a} =  \dfrac{ - 10}{1} =  - 10

\rm We\: Have :-

  • \rm \alpha + \beta = -3

  • \rm \alpha \beta = -10

Now, we need to find the quadratic polynomial of zeroes

2α + 2β

\rm Sum\: of \: zeroes:-

\rm = 2\alpha + 2\beta

\rm = 2(\alpha + \beta)

\rm = 2(-3)

\rm = -6

\rm Sum \: of \: zeroes = -6

\rm Product \: of \: zeroes :-

\rm = 2\alpha \times 2\beta

\rm = 2(\alpha\beta)

\rm = 2(-10)

\rm = -20

\rm Product \: of \: zeroes = -20

\rm The \: general \: form \: of \: quadratic \: polynomial \: is

   \rm =  {x}^{2} - ( sum \: of \: zeroes)x + product \: of \: zeroes

   \rm  = {x}^{2} - (  - 6)x + ( - 20)

   \rm =  {x}^{2} + 6x - 20

   \underline{ \boxed{ \purple{ \rm \therefore \: Required \: polynomial =  {x}^{2}   + 6x - 20}}}

Similar questions