Math, asked by ksreddi0, 9 months ago

If alpha and beta are the zeroes of x²-x-4 then find the value of 1/alpha +1/beta -alpha xbeta

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta =  \frac{ - 15}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2}  - x - 4 = 0 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  -  \alpha  \beta  =

• According to given question :

 \bold{For \: sum \: of \: zeroes : } \\  \tt:  \implies  \alpha  +  \beta  =  \frac{ - b}{a} \\  \\  \tt:  \implies  \alpha  +  \beta  = \frac{ - ( - 1)}{1}  \\  \\  \green{\tt:  \implies  \alpha  +  \beta  =1} \\  \\  \bold{For \: product \: of \: zeroes : } \\ \tt:  \implies  \alpha    \beta  =  \frac{c}{a}  \\  \\ \tt:  \implies  \alpha\beta  = \frac{4}{1}  \\  \\  \green{\tt:  \implies  \alpha \beta  =4} \\  \\  \bold{For \: finding \: value : } \\ \tt:  \implies   \frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta \\  \\ \tt:  \implies  \frac{ \alpha  +  \beta }{ \alpha  \beta }  -  \alpha  \beta  \\  \\ \tt:  \implies  \frac{1}{4}  - 4 \\  \\ \tt:  \implies  \frac{ 1 -16 }{4}  \\  \\  \green{\tt:  \implies  \frac{ - 15}{4} } \\  \\  \green{ \tt \therefore \frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta =  \frac{ - 15}{4} }

Similar questions