Math, asked by apoorva2004, 11 months ago

if alpha and beta are the zeros and the quadratic polynomial FX = x square minus x minus 4 then the value of one upon alpha plus one upon beta minus alpha beta is ​

Answers

Answered by SunDaze
7

\huge\star{\green{\mathfrak{\underline{AnSwEr}}}}

\large{\sf{\underline{\underline \blue{Step \: by \: step \: expanation:-}}}}

{\sf{\underline{\underline \red{Given-}}}}

\sf\ A\: polynomial \: = \: x^2 \: - \: x \: - 4

{\sf{\underline{\underline \red{ To \: find -}}}}

\sf\frac{1}{\alpha} \: + \: \frac{1}{\beta}

\large{\sf{\underline{\underline \red{Solution-}}}}

From equation;

\sf\ a \: = \: 1, \: b \: = \: -1, \: c \: = -4

Also;

\sf\ sum \: of \: roots(\alpha \: + \: \beta) \: = \frac{-b}{a}

So;

\sf\alpha \: + \beta \: = \: \frac{-(-1)}{1}

\sf\alpha \: + \beta \: = \: 1

Again;

\sf\ product \:  of \:  roots(\alpha\beta) \: = \: \frac{c}{a}

\large\sf\alpha\beta \: = \: \frac{-4}{1}

\sf\alpha\beta \: = \: -4

Now;

\large\sf\frac{1}{\alpha} \: + \: \frac{1}{\beta} \: = \: \frac{\alpha \: + \: \beta}{\alpha\beta}

According to it,consitute the values;

\large\sf\frac{\alpha \: + \: \beta}{\alpha\beta} \: = \: \frac{1}{-4}

Your final answer:

\large\sf\frac{1}{\alpha} \: + \: \frac{1}{\beta} \: = \: \frac{1}{-4}

Answered by HassanKhan8585
0

Answer:

I hope this is helpful answer for you.....

please follow me.......

Attachments:
Similar questions