Math, asked by rkdolic, 1 month ago

If alpha and beta are the zeros of polynomial 3 x^2-5x-9 find value of 2/ Alpha + 2/ beta.. Please solve this question fast, don't post any irrelevant answer.. Class 10 maths ​

Answers

Answered by Surajrai8484
1

Answer:

-10/9

Step-by-step explanation:

I have already answered this question, you can check in my maths section recent answers.

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  {3x}^{2} - 5x - 9.

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha + \beta  =  - \dfrac{( - 5)}{3} = \dfrac{5}{3}   -  -  - (1)

Also,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{ - 9}{ 3}  =  - 3 -  -  - (2)

Now,

Consider,

\rm :\longmapsto\:\dfrac{2}{ \alpha }  + \dfrac{2}{ \beta }

\rm \:  \:  =  \: 2\bigg(\dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }  \bigg)

\rm \:  \:  =  \: 2\bigg(\dfrac{ \beta  +  \alpha }{ \alpha  \beta }  \bigg)

\rm \:  \:  =  \: 2 \times \dfrac{( - 5)}{3}  \times \dfrac{1}{3}

\rm \:  \:  =  \:  -  \: \dfrac{10}{9}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{\bf\implies \:\:\dfrac{2}{ \alpha }  + \dfrac{2}{ \beta }  =  -  \: \dfrac{10}{9} }}

Additional Information :-

\rm :\longmapsto\: \alpha,\beta \: and \:  \gamma  \: are \: zeroes \: of \:   {ax}^{3} + {bx}^{2} + cx + d

then,

\green{\boxed{ \tt \:  \alpha  +  \beta  +  \gamma  =  -  \: \dfrac{b}{a} }}

\green{\boxed{ \tt \:  \alpha \beta   +  \beta \gamma   +  \gamma \alpha   =    \: \dfrac{c}{a} }}

\green{\boxed{ \tt \:  \alpha  \beta  \gamma  =  -  \: \dfrac{d}{a} }}

Similar questions