Math, asked by ramozarsk, 1 year ago

If alpha and beta are the zeros of polynomial 3x2-2x-7 then find the value of alpha/beta + beta/Alpha

Answers

Answered by Anonymous
90

Given Polynomial:- 3x²-2x-7

Now..

Sum of zeroes=-b/a=-(-2)/3=2/3

Product of Zeroes=c/a=-7/3

ACCORDING TO THE QUESTION....

a/b+b/a

=)a²+b²/ab

= ( a + b)² - 2ab /ab

= ( 2/3)² - 2× -7/3 ÷ 7/3

= (4/9 + 14/3 ) ÷ 7/3

= 4 + 42/9 ÷ 7/3

= 46/9 ÷ 7/3

= 46/9 × 3/7

= 46/3 × 1/7

= 46/21


ramozarsk: This is wrong
ramozarsk: The answer is -46/21
ramozarsk: Thanks for answering
Answered by smithasijotsl
8

Answer:

\frac{\alpha }{\beta }  + \frac{\beta }{\alpha } =  \frac{-46}{21}

Step-by-step explanation:

If '\alpha' and '\beta'  are the roots of the equation  ax^{2}  +bx +c = 0  

then we have,

Sum of roots = \alpha +\beta = \frac{-b}{a}   and Product of roots = \alpha \beta = \frac{c}{a}

Here, Given

If '\alpha' and '\beta'  are the roots of the equation  3x^2-2x-7 = 0

Comparing  3x^2-2x-7 = 0 with ax^{2}  +bx +c = 0

we get,

a = 3 , b = -2 , c = -7

Then \alpha +\beta = \frac{-b}{a}  =   \frac{-(-2)}{3}   = \frac{2}{3} and \alpha \beta = \frac{c}{a} = \frac{-7}{3}

Required to find

\frac{\alpha }{\beta }  + \frac{\beta }{\alpha }

Taking LCM as \alpha \beta ,

 \frac{\alpha }{\beta }  + \frac{\beta }{\alpha } = \frac{\alpha ^2+ \beta ^2}{\alpha \beta } -------------(1)

we know, the identity a ^{2} + b ^2  = (a+b )^2 - 2ab

Substitute the value of \alpha ^2 + \beta ^2 in equation (1) we get

\frac{\alpha }{\beta }  + \frac{\beta }{\alpha } =  \frac{(\alpha +\beta )^2 - 2\alpha \beta}{\alpha \beta }

= \frac{( \frac{2}{3} )^2 - 2*(\frac{-7}{3}) }{\frac{-7}{3}  }

= \frac{( \frac{4}{9} ) +(\frac{14}{3}) }{\frac{-7}{3}  }

= \frac{4+42}{9} * (\frac{-3}{7} )

= \frac{46}{9} *\frac{-3}{7}

= \frac{-46}{21}

Hence, \frac{\alpha }{\beta }  + \frac{\beta }{\alpha } =  \frac{-46}{21}

Similar questions