Math, asked by unnimaayasenniyappan, 5 months ago

if alpha and beta are the zeros of polynomial P of x is equal to 2 X square + 5 x + ki satsi find the relation Bita squire Plus Alpha square plus alpha beta equal to 21 by 7 then find the value of k​

Answers

Answered by knjroopa
16

Step-by-step explanation:

Given if alpha and beta are the zeros of polynomial P of x is equal to        2 x^2 + 5 x + k satisfying the relation Beta^2+ Alpha^2 plus alpha beta equal to 21 / 7 then find the value of k

  • Now p(x) = 2x^2 + 5x + k
  • So p(α) = f (β) = 0
  • Now sum of roots α + β = - 5/2  (- coefficient of x / coefficient of x^2)
  • Also product αβ = k/2 (coefficient of constant term / coefficient of x^2)
  • So now we need to satisfy the relation  
  •                    α ^2 + β^2 + αβ = 21/7  
  •                   (So (α + β)^2 = α^2 + β^2 + 2αβ)
  •       Now we can write the equation as
  •                      (α + β)^2 - 2αβ + αβ = 21 / 7
  •                       (-5/2)^2 – k/2 = 3
  •                        25/4 – k/2 = 3
  •                       25 – 2k = 12
  •                      25 – 12 = 2k
  •                       2k = 13
  •                    Or k = 13/2

Reference link will be

https://brainly.in/question/8667628

Answered by lkishorep
0
  • alpha ² +beta² = (alpha +beta )² = 2ALPHA beta
  • x²-5x+6( -5/2 )² - k/2 = 3
  1. 25/4 - k /2 =3
  2. 25-2k=12
  • 25-2k=12
  • 25-12=2k
  1. 2k=13
  2. k=13
  3. the correct option is c.) 13 or 13/2
Similar questions