Math, asked by DashBoardOp, 6 days ago

If alpha and beta are the zeros of polynomial p(x)=3x^2+2x+1,find the polynomial whose zeroes are alpha-1/alpha+1 and beta-1/beta+1​

Answers

Answered by SparklingBoy
69

\large \bf \clubs \:  Given :-

α and β are the Zeros of the polynomial

p(x) = 3x² + 2x + 1 .

-----------------------

\large \bf \clubs \:  To  \: Find :-

The Polynomial whose Zeros are 

 \sf \dfrac{ \alpha-1 }{  \alpha +1}  \:  \: and \:  \:  \dfrac{ \beta-1 }{\beta+1 }

-----------------------

\large \bf \clubs \:   Main  \:  Concepts :-

✏ 1》For a qudratic Polynomial of the Form  ax² + bx + c :-

Sum of Zeros =  \sf-\dfrac{b}{a}

Product of Zeros = \sf\dfrac{c}{a}

✏ 2》 A Quadratic Polynomial whose sum and product of Zeros are S and P respectively is given by x² - Sx + P

-----------------------

\large \bf \clubs \:  Solution :-

As α and β are the Zeros of the Polynomial

3x² + 2x + 1

Hence ,

 \pmb{ \alpha  +  \beta  = -  \dfrac{2}{3}  }  \:  \:  -  -    - (1)\\  \bf and \\  \pmb{ \alpha  \beta  =  \dfrac{1}{3} } \:  \:  -  -   - (2) 

For The  Equation whose Zeros are

 \sf \dfrac{ \alpha-1 }{  \alpha +1}  \:  \: and \:  \:  \dfrac{ \beta-1 }{\beta+1 }

\sf Sum\:of\:Zeros=\dfrac{ \alpha - 1 }{ \alpha  + 1 }   +  \frac{ \beta  - 1}{ \beta  + 1}  \\  \\  =\dfrac{(\alpha - 1)(\beta + 1) + (\alpha + 1)(\beta - 1)}{(\alpha + 1)(\beta + 1)} \\\\  \:  =  \:  \: \dfrac{\alpha \beta - 1 - \beta + \alpha + \alpha \beta - \alpha + \beta - 1}{\alpha \beta + \alpha + \beta + 1}\\\\ \:  =  \:  \: \dfrac{2\alpha \beta - 2}{\alpha \beta + \alpha + \beta + 1} \\\\  \:  =  \:  \: \dfrac{2(\alpha \beta - 1)}{\alpha \beta + (\alpha + \beta) + 1}

Using Equations (1) and (2) :

= \dfrac{2 \times  \bigg(\dfrac{1}{3} - 1\bigg) }{\dfrac{1}{3} - \dfrac{2}{3} + 1} \\\\  = \dfrac{2 \times \bigg(\dfrac{1 - 3}{3} \bigg) }{\dfrac{1 - 2 + 3}{3} }\\\\= \dfrac{2 \times \bigg( - \cancel \dfrac{ 2}{3} \bigg) }{ \cancel\dfrac{2}{3} }\\\\= - 2

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf S =  - 2} }}}

\sf Product\:of\:Zeros= \dfrac{\alpha - 1}{\alpha + 1} \times \dfrac{\beta - 1}{\beta + 1}\\\\= \dfrac{\alpha \beta - \alpha - \beta + 1}{\alpha \beta + \alpha + \beta + 1}\\\\=  \dfrac{\alpha \beta -( \alpha + \beta) + 1}{\alpha \beta + \alpha + \beta + 1} 

Using Equations (1) and (2) :

\dfrac{\dfrac{1}{3} + \dfrac{2}{3} + 1}{\dfrac{1}{3} - \dfrac{2}{3} + 1}\\\\ = \dfrac{\dfrac{1 + 2 + 3}{3} }{\dfrac{1 - 2 + 3}{3} }\\\\=  \cancel\dfrac{6}{2} \\  \\  = 3

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf P =3 } }}}

Hence The Řequired Polynomial is :

x² - (-2) x + 3

That is :

 \LARGE \underline{\underline{\bf \pink{ {x}^{2}   + 2x - 3}}}

 \Large\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \LARGE \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

Answered by Anonymous
75

Answer:

Given:-

Polynomial \: 3 {x}^{2}  + 2x + 1 \: whose \: zeros \: are \:  \alpha  \: and \:  \beta

find \: the \: plynomial \: whose \: zeros \: are \: ( \frac{1 -  \alpha }{1 +  \alpha } ) \: and \: ( \frac{1 -  \beta }{1 +  \beta } )

 \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - 2}{3}

 \alpha  \beta  =  \frac{b}{a}  =  \frac{1}{3}

 \frac{1 -  \alpha }{1 +  \alpha }  +  \frac{1 -  \beta }{1 +  \beta }

 =  \frac{(1 -  \alpha )(1 +  \beta ) + (1 -  \beta )(1 +  \alpha )}{(1 +  \alpha )(1 +  \beta )}

 =  \frac{1 +  \beta  -  \alpha  -  \alpha  \beta  + 1 +  \alpha  -  \beta  -  \alpha  \beta }{1 +  \beta  +  \alpha  +  \alpha  \beta }

  • Beta and alpha gets cancelled.

 =  \frac{2 - 2 \alpha  \beta }{1 +  \alpha  +  \beta  +  \alpha  \beta }

 = \frac{2(1 -  \alpha  \beta )}{1 +  \alpha  +  \beta  +  \alpha  \beta }

  • Here 3 gets cancelled.

 = 2(   \frac {2}{3} )   \div  \frac{3 - 2 + 1}{3}

 = 2 (\frac{1 - 1}{3} ) \div 1  - \frac{ 2}{3}  +  \frac{1}{3}

 =  \alpha   +  \beta  = 2

#BrainLock.

Attachments:
Similar questions