If alpha and beta are the zeros of polynomial p(x)=3x^2+2x+1,find the polynomial whose zeroes are alpha-1/alpha+1 and beta-1/beta+1
Answers
We have
α and β are the Zeros of the polynomial
p(x) = 3x² + 2x + 1 .
and we have to find a Polynomial whose Zeros are
So Let's Begin :-)
As α and β are the Zeros of the Polynomial
3x² + 2x + 1
Hence ,
For The Polynomial whose Zeros are
Putting Values from (i) & (ii)
Putting Values from (i) & (ii)
Hence The Required Polynomial is :
x² - (-2) x + 3
That is :
-----------------------
✏ 1》For a qudratic Polynomial of the Form ax² + bx + c :-
Sum of Zeros =
Product of Zeros =
✏ 2》 A Quadratic Polynomial whose sum and product of Zeros are S and P respectively is of the Form x² - Sx + P
-----------------------
Given :-
3x² + 2x + 1
To Find :-
Find the polynomial whose zeroes are alpha - 1/alpha + 1 and beta - 1/beta +1
Solution :-
On comparing the given equation with ax² + bx + c. We get
a = 3
b = 2
c = 1
Sum of zeroes = -b/a
Sum = -(2)/3
Sum = -2/3
Product of zeroes = c/a
Product = 1/3
Now,
New Sum of zeroes = α - 1/α + 1 + β - 1/β + 1
⇒ (α - 1)(β + 1) + (α + 1)(β - 1)/(α + 1)(β + 1)
⇒ αβ - 1 - β + α + αβ - α + αβ - α + β - 1/αβ + α + β + 1
⇒ (αβ + αβ) - (1 + 1)/αβ + (α + β) + 1
⇒ 2αβ - 2/αβ + (α + β) + 1
⇒ 2(1/3) - 2/(1/3) + (-2)/3 + 1
⇒ 2/3 - 2/(1 - 2 + 3/3)
⇒ (2 - 6/3)/(4 - 2/3)
⇒ (-4/3)/(2/3)
⇒ -4/3 × 3/2
⇒ -2
New Product of zeroes = (α - 1/α + 1)(β - 1/β + 1)
⇒ αβ - α - β + 1/αβ + α + β + 1
⇒ αβ - (α + β) + 1/αβ + (α + β) + 1
⇒ 1/3 - (-2/3) + 1/[1/3 + (-2/3) + 1]
⇒ 1/3 + 2/3 + 1/[1/3 - 2/3 + 1]
⇒ (1 + 2 + 3/3)/(1 - 2 + 3/3)
⇒ (6/3)/(2/3)
⇒ 6/3 × 3/2
⇒ 3
Standard form of quadratic polynomial = x² - (α + β)x + αβ
⇒ x² - (-2)x + (3)
⇒ x² + 2x + 3