Math, asked by Anonymous, 6 days ago

If alpha and beta are the zeros of polynomial p(x)=3x^2+2x+1,find the polynomial whose zeroes are alpha-1/alpha+1 and beta-1/beta+1​

Answers

Answered by Anonymous
27

Answer:

  \frac{(1 -  \alpha )(1 - \beta ) }{(1 +  \alpha )(1 +  \beta )}

 \frac{(1 -  \alpha   -  \beta +  \alpha  \beta ) }{(1 +  \alpha  +  \beta  =  \alpha  \beta )}

( \frac{1 - ( \alpha  +  \beta ) +  \alpha  \beta }{1 + ( \alpha  +  \beta ) +  \alpha  \beta } )

 |1 +  \frac{2}{3} +  \frac{1}{3}    | | \div 1 -  \frac{2}{3}  +  \frac{1}{3}  |

( \frac{2 \times 3}{2} ) = 3

 =  \frac{(1 -  \alpha )(1 +  \beta ) + (1 -  \beta )(1 +  \alpha )}{(1 +  \alpha  +  \beta  +  \alpha  \beta )}

 =  \frac{1 +  \beta  -  \alpha  -  \alpha  \beta  + 1 +  \alpha  -  \beta  -  \alpha  \beta }{ \frac{2}{3} }

 =  \frac{3(2 - 2 \alpha  \beta )}{2}

 = 3(1 -  \alpha  \beta )

 = 3(1 -  \frac{1}{3} )

 = 2 \:  \: (ans)

#BrainLock.

Similar questions