Math, asked by fareedyasir123, 1 year ago

if alpha and beta are the zeros of polynomial x^2+4x-3 form a quadratic equation whose zeroes are (3+alpha) and (3+beta).

Answers

Answered by Anonymous
1

 {x}^{2}  + 4x - 3 \\ by \: spliting \: the \: middle \: term \\  {x}^{2}  + 3x + x - 3 \\ x(x + 3) + 1(x - 3) \\ (x - 3) \: (x + 1) \\ x = 3  \: \: x =  - 1 \\  \alpha  = 3 \\  \beta  =  - 1 \\ for \: new \: quadratic \: eq. \\ (3 +  \alpha ) \:  \:  \:  \:  \: (3 +  \beta ) \\ (3 + 3) \:  \:  \:  \:  \: (3 + ( - 1)) \\ =  6 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =  2 \\  \alpha  = 6 \\  \beta  = 2 \\ by \: quadatic \: formula \\  {x}^{2}   + ( \alpha  +  \beta ) -  \alpha . \beta  \\  {x}^{2}  + (6 + 2) -( 6)(2 )\\  {x}^{2}  + 8x - 12 \\ this \: is \: your \: answer \\ hope \: it \: will \: help \: u
Similar questions