Math, asked by sarthaksk1029, 10 months ago

if alpha and beta are the zeros of quadratic polynomial 4 x square - 5 x minus 1 find the value of alpha/beta + beta/ alpha​

Answers

Answered by TrickYwriTer
1

Step-by-step explanation:

 \bold{Correct  \: Question -} \\ If \:  \alpha \: and \:  \beta \: are \: the \: Zeroes \: of \:  \\ quadratic \: polynomial  \: 4{x}^{2}  - 5x  +  1 \\  then, \: Find \: the \: value \: of \:  \frac{ \alpha}{ \beta}  +   \frac{ \beta}{ \alpha}

\bold{Given-} \\   \bold{\alpha }\: and \:   \bold{\beta} \: are \: zeroes \: of \: quadratic \: polynomial \\  \bold{4 {x}^{2}   - 5x + 1} \\  \\  \bold{To \: Find - } \\  \bold{ Value \: of \:  \: \frac{ \alpha}{ \beta}  +  \frac{ \beta}{ \alpha} } \\  \\ Now, \\ According \: to \: the \: Question \\  \\ At \: first \: we \: need \: to \:  \bold{Factorise} \\  \bold{4 {x}^{2}  - 5x  +  1} \: to \: find \: zeroes \: of \: this \: polynomial \\  \\ 4 {x}^{2}  - 5x + 1 \\ 4 {x}^{2}  - 4x - x + 1 \\ 4x(x - 1) - 1(x - 1)\\(4x - 1)(x - 1)   \\  \\  \bold{Zeroes \: are - } \\ 4x - 1 = 0 \:  \:  \: and \:  \: x - 1 = 0 \\ \fbox  \bold{x =  \frac{1}{4}  \:  \:  \: and \:  \: x = 1}

Let  \:  \bold{\alpha = 1}  \\ And \\  \bold{ \beta =  \frac{1}{4} } \\  \\ Now, \\ We \: need \: to \: find \: the \: value \: of \\  \bold{ \frac{ \alpha}{ \beta}  +  \frac{ \beta}{ \alpha} } \\  \\  \frac{1}{ \frac{1}{4} }  +  \frac{ \frac{1}{4} }{1}   \\ 4 +  \frac{1}{4}  \\  \frac{16 + 1}{4}  \\   \\  = \frac{17}{4}  \\  \\ Hence,  \\ The \: value \: of \:  \bold{ \frac{ \alpha}{ \beta}  +  \frac{ \beta}{ \alpha} } \: is \:  \bold{ \frac{17}{4} }

Answered by Anonymous
12

 \huge \tt \it \bf \it \bm { \mathbb{ \fcolorbox{blue}{yellow}{  \red{ANSWER :}}}}   \green\longrightarrow

 \huge \green { \underline{GIVEN}}  \green\longrightarrow

 \large4 {x}^{2}  - 5x - 1 \\  \\

\huge \green { \underline{TO \ FIND}}  \green\longrightarrow

  \large\frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \\

 \huge \green{ \underline{SOLUTION}}  \green\longrightarrow

\longrightarrow4 {x}^{2}  - 5x + 1 \\   \\ \longrightarrow4 {x}^{2}  - 4x - x + 1  \\ \\\longrightarrow 4x(x - 1) - 1(x - 1) \\ \\ \longrightarrow (4x - 1)(x - 1) \\

 \huge \green{ \underline{ ZEROES  \: ARE}} \longrightarrow

 \large \boxed{ \fbox{ \red{x =  \frac{1}{4} \: and \: x = 1 }}}

NOW,

 \large \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  =  \frac{ \frac{1}{1} }{4}  +  \frac{ \frac{1}{4} }{1}  \\  \\  =  >  \frac{4}{1}  +  \frac{1}{4}  \\  \\  =  >  \frac{16 + 1}{4}  \\  \\  =  >  \frac{17}{4}

so,

 \large{ \boxed{ \fbox{ \blue{ \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha } =  \frac{17}{4}  }}}}

____________________

hops this may help you

 \huge{ \red{ \ddot{ \smile}}}

 \huge \green{ \mathfrak{thanks♡</p><p>}}

Similar questions