if alpha and beta are the zeros of quadratic polynomial f(x) ax2+bx+c then evaluate alpha4+beta4
Answers
Step-by-step explanation:
refer to the attachment ...☺☺☺☺☺
Answer:
α⁴ + β⁴ =
Step-by-step explanation:
Given,
α and β are the zeros of the quadratic polynomial f(x) = ax²+bx+c
To find,
The value of α⁴ + β⁴
Solution:
Recall the concepts:
If α and β are the zeros of the quadratic polynomial ax²+bx+c,
then Sum of zeros = α+β =
Product of zeros = αβ =
α+β = and αβ = -----------------------(1)
α⁴ + β⁴ = (α² + β²)² - 2α²β² ---------------(2)
α² + β² =(α+β)² - 2αβ
(α² + β²)² =((α+β)² - 2αβ)²
= (α+β)⁴ + 4α²β² - 2(α+β)² ×2αβ
= (α+β)⁴ + 4(αβ)² - 4(α+β)² ×αβ
(α² + β²)² = (α+β)⁴ + 4(αβ)² - 4(α+β)² ×αβ
Equation (2) becomes, α⁴ + β⁴ = (α+β)⁴ + 4(αβ)² - 4(α+β)² ×αβ - 2α²β²
= (α+β)⁴ + 4(αβ)² - 4(α+β)² ×αβ - 2(αβ)²
= (α+β)⁴ + 2(αβ)² - 4(α+β)² ×αβ
α⁴ + β⁴ = (α+β)⁴ + 2(αβ)² - 4(α+β)² ×αβ
Substituting the value of α+β and αβ from equation (1) we get,
α⁴ + β⁴ = ( )⁴ + 2( )² - 4( )² ×
= + -
=
∴α⁴ + β⁴ =
#SPJ2