Math, asked by 9429480426, 1 year ago

if alpha and beta are the zeros of quadratic polynomial f(x) ax2+bx+c then evaluate alpha4+beta4​

Answers

Answered by rudra09
91

Step-by-step explanation:

refer to the attachment ...☺☺☺☺☺

Attachments:
Answered by smithasijotsl
0

Answer:

α⁴ + β⁴ =  \frac{b^4+2a^2c^2 - 4ab^2c}{a^4}

Step-by-step explanation:

Given,

α and β are the zeros of the quadratic polynomial f(x) = ax²+bx+c

To find,

The value of α⁴ + β⁴

Solution:

Recall the concepts:

If α and β are the zeros of the  quadratic polynomial ax²+bx+c,

then Sum of zeros = α+β = \frac{-b}{a}

Product of zeros = αβ = \frac{c}{a}

α+β = \frac{-b}{a} and  αβ = \frac{c}{a} -----------------------(1)

α⁴ + β⁴ = (α² + β²)² - 2α²β²  ---------------(2)

α² + β² =(α+β)² - 2αβ

(α² + β²)² =((α+β)² - 2αβ)²

= (α+β)⁴ + 4α²β² - 2(α+β)² ×2αβ

= (α+β)⁴ + 4(αβ)² - 4(α+β)² ×αβ

(α² + β²)² =  (α+β)⁴ + 4(αβ)² - 4(α+β)² ×αβ

Equation (2) becomes, α⁴ + β⁴ =  (α+β)⁴ + 4(αβ)² - 4(α+β)² ×αβ - 2α²β²

= (α+β)⁴ + 4(αβ)² - 4(α+β)² ×αβ - 2(αβ)²

= (α+β)⁴ + 2(αβ)² - 4(α+β)² ×αβ

α⁴ + β⁴ = (α+β)⁴ + 2(αβ)² - 4(α+β)² ×αβ

Substituting the value of  α+β and  αβ from equation (1) we get,

α⁴ + β⁴ = ( \frac{-b}{a} )⁴ + 2( \frac{c}{a})² - 4( \frac{-b}{a} )² × \frac{c}{a}

= \frac{b^4}{a^4} + \frac{2c^2}{a^2}-\frac{4b^2c}{a^3}

= \frac{b^4+2a^2c^2 - 4ab^2c}{a^4}

α⁴ + β⁴ =  \frac{b^4+2a^2c^2 - 4ab^2c}{a^4}

#SPJ2

Similar questions