Math, asked by chejerlasri8906, 10 months ago

If alpha and beta are the zeros of quadratic polynomial f x power 6 X square + X - 2 find the value of Alpha upon beta and beta upon Alpha

Answers

Answered by TrickYwriTer
11

Step-by-step explanation:

Correct Question :-

If α and β are zeroes of polynomial f(x) = 6x² + x - 2. Find the value of α/β + β/α

Solution :-

Given -

  • α and β are zeroes of polynomial f(x) = 6x² + x - 2

To Find -

  • Value of α/β + β/α

→ α² + β²/αβ

Now,

→ 6x² + x - 2

As we know that :-

  • αβ = c/a

→ αβ= -2/6

And

  • α + β = -b/a

→ α + β = -1/6

Squaring both sides :-

→ (α + β)² = (-1/6)²

→ α² + β² + 2αβ = 1/36

→ α² + β² = 1/36 - 2×-2/6

→ α² + β² = 1/36 + 4/6

→ α² + β² = 1 + 24/36

→ α² + β² = 25/36

Now,

The value of α² + β²/αβ is

→ 25/36 ÷ -1/6

→ 25/36 × -6

→ -25/6

Hence,

The value of α/β + β/α is -25/6.

Answered by Anonymous
7

Given :

The polynomial is 6(x)² + x - 2 and their roots are α and β

We know that ,

 \large \sf \fbox{ \alpha  \beta  =  \frac{c}{a} }

Thus ,

 \sf \hookrightarrow \alpha  \beta  =   - \frac{  2}{6}  \\  \\ \sf \hookrightarrow \alpha  \beta  =  -  \frac{1}{3}

And

 \sf \large \fbox{ \alpha  +  \beta  =  -  \frac{b}{a} }

Thus ,

 \alpha  +  \beta  =  -  \frac{1}{6}

Squaring both sides , we get

 \sf \hookrightarrow { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  =  -  \frac{1}{36}  \\  \\\sf \hookrightarrow  { \alpha }^{2}  +  { \beta }^{2}  +2 ( -  \frac{1}{3} ) =  -  \frac{1}{36}  \\  \\ \sf \hookrightarrow { \alpha }^{2}  +  { \beta }^{2}  =  -  \frac{1}{36}  +  \frac{2}{3}  \\  \\  \sf \hookrightarrow { \alpha }^{2}  +  { \beta }^{2}  =  \frac{ - 1 + 24}{36}  \\  \\ \sf \hookrightarrow { \alpha }^{2}  +  { \beta }^{2}  =  \frac{ 25}{36}

Now , the value of α² + β²/αβ will be

 \sf \hookrightarrow \frac{25}{36 \times (  - \frac{1}{3}) }  \\  \\\sf \hookrightarrow  -  \frac{25}{12}

 \therefore \sf \underline{The \:  required \:  value  \: is  \:   - \frac{25}{12} }

Similar questions