Math, asked by mehrunnisa7566, 10 months ago

If alpha and beta are the zeros of quadratic polynomial f(x) ax2+bx+c then evaluate alpha square and beta square

Answers

Answered by amitkumar44481
45

To FinD :

 \tt \dagger \:  \:  \:  \:  \:  { \alpha }^{2} +   { \beta }^{2}

SolutioN :

We have, Quadratic polynomial.

 \tt \dagger \:  \:  \:  \:  \: a {x}^{2}  + bx + c.

☛ We have,

☄ Sum of Zeros.

→ α + β = - b / a.

\rule{90}2

☄ Product Of Zeros.

→ α * β = c / a.

\rule{90}2

☯ Let's Find the value of,

 \tt  : \implies  { \alpha }^{2} +   { \beta }^{2}

☛ We have, Formula.

  • a² + b² = ( a + b )² - 2ab.

 \tt  : \implies  {\bigg( \alpha  +  \beta  \bigg)}^{2}  - 2 \alpha  \beta .

 \tt  : \implies  {\bigg(  \dfrac{ - b}{a}   \bigg)}^{2}  - 2   \bigg(\dfrac{c}{a}  \bigg)

 \tt  : \implies   \dfrac{{ b}^{2} }{{a }^{2} }   - \dfrac{2c}{a}

 \tt  : \implies   \dfrac{{b}^{2}  - 2ac}{{a }^{2} }

Therefore, the value of required answer is b² - 2ac / a².

Answered by Anonymous
4

Step-by-step explanation:

QUESTION:-

If alpha and beta are the zeros of quadratic polynomial f(x) ax2+bx+c then evaluate alpha square and beta square

ANSWER:-

We have, Quadratic polynomial.

\tt \dagger \: \: \: \: \: a {x}^{2} + bx + c.†ax 2 +bx+c.

☛ We have,

☄ Sum of Zeros.

→ α + β = - b / a.

☄ Product Of Zeros.

→ α * β = c / a.

Similar questions