Math, asked by 009kat, 1 month ago

if alpha and beta are the zeros of quadratic polynomial p of x²-5x+6 find beta upon alpha plus alpha upon beta and alpha -beta​

Answers

Answered by rosoni28
21

5→α+β=a−b=1−(−5)=5

{6}{1} →αβ+βα

β+βαNowSimplifytheequation→αβα2+β2→αβ(α+β)2−2αβNow Put the value

→α+β=5→αβ=6

→α+β=5→αβ=6We get::-

→625−2×6=625−12=613

Now Take

Take→α−β

equation::-

Simplify the equation !

→(α−β)2

→α2+β2−2αβ

→(α+β)2−2αβ−2αβ

→(α+β)2−4αβ

Now Put the value

→α+β=5

→αβ=6{(5) { }^{2} - 4 \times 6}

→(5)2−4×6{25 - 24} = \sqrt{1} = 1

→25−24=1=1

Answer = 1

→αβ+βα=613andα−β=1

Answered by Anonymous
10

 \bf \: Given

 \sf \to \: {x}^{2} - 5x + 6 = 0

 \bf \: To \: find

 \sf \to \: \dfrac{ \beta }{ \alpha } + \dfrac{ \alpha }{ \beta } \: and \: \alpha - \beta

 \bf \:Now \: Compare \: with

 \sf \to \: a {x}^{2} + bx + c = 0

 \bf \: We \: get

 \sf \to \: a = 1,b = - 5 \: and \: c \: = 6

 \bf \: We \: know \: that

 \sf \to \: \alpha + \beta = \dfrac{ - b}{a} = \dfrac{ - ( - 5)}{1} = 5

 \sf \to \alpha \beta = \dfrac{c}{a} = \dfrac{6}{1} = 6

 \bf \: Now \: Take

 \sf \to \: \dfrac{ \beta }{ \alpha } + \dfrac{ \alpha }{ \beta }

 \bf Now \: Simplify \: the \: equation

 \sf \to \: \dfrac{ { \alpha }^{2} + { \beta }^{2} }{ \alpha \beta }

\sf \to \: \dfrac{( \alpha + \beta )^2 - 2 \alpha \beta }{ \alpha \beta }

 \bf \: Now \: Put \: the \: value

 \sf \to \: \alpha + \beta = 5 \\ \sf \to \alpha \beta = 6 \: \: \: \: \: \:

 \bf \: We \: get

\sf \to \: \dfrac{25 - 2 \times 6}{6} = \dfrac{25 - 12}{6} = \dfrac{ 13}{6}

 \bf \: Now \: Take

 \sf \to \alpha - \beta

 \bf \: Simplify \: the \: equation

 \sf \to \sqrt{( \alpha - \beta ) {}^{2} }

 \sf \to \sqrt{ { \alpha }^{2} + { \beta }^{2} - 2 \alpha \beta }

 \sf \to \sqrt{( \alpha + \beta ) {}^{2} - 2 \alpha \beta - 2 \alpha \beta }

 \sf \to \: \sqrt{( \alpha + \beta ) {}^{2} - 4 \alpha \beta }

 \bf \: Now \: Put \: the \: value

\sf \to \: \alpha + \beta = 5 \\ \sf \to \alpha \beta = 6 \: \: \: \: \: \:

 \sf \to \: \sqrt{(5) { }^{2} - 4 \times 6}

 \sf \to \sqrt{25 - 24} = \sqrt{1} = 1

 \bf \:Answer

\sf \to \: \dfrac{ \beta }{ \alpha } + \dfrac{ \alpha }{ \beta } = \dfrac{ 13}{6} \: and \: \alpha - \beta = 1

Similar questions