Math, asked by Rahulsaini7652, 11 months ago

If alpha and beta are the zeros of quadratic polynomial p(x)=x^2-5x+k such that alpha -beta =1

Answers

Answered by Anonymous
4

QuesTion:

If \sf{\alpha} and \sf{\beta} are the zeroes of quadratic polynomial \sf{p(x)=x^{2}-5x+k} such that \sf{\alpha-\beta=1}. Find the value of k.

Answer:

The value of k is 6.

Given:

  • The given polynomial is \sf{p(x)=x^{2}-5x+k}

  • \sf{\alpha \ and \ \beta} are the zeroes of the polynomial.

  • \sf{\alpha-\beta=1}

To find:

The value of k.

SoLution:

The given quadratic polynomial is \sf{p(x)=x^{2}-5x+k}

Here a=1, b=-5 and c=k

Sum of zeroes=\sf{\frac{-b}{a}}

\sf{\therefore{\alpha+\beta=5...(1)}}

Product of zeroes=\sf{\frac{c}{a}}

\sf{\therefore{\alpha\beta=k...(2)}}

According to identify:-

\bold{(a+b)^{2}=(a-b)^{2}+4ab}

\sf{(\alpha+\beta)^{2}=(\alpha-\beta)^{2}+4\alpha\beta}

...from (1) and (2)

\sf{5^{2}=1^{2}+4k}

{\therefore} 25=1+4k

{\therefore} 4k=25-1

{\therefore{k=\frac{24}{4}}}

{\therefore} k=6

The value of k is 6.

Answered by Anonymous
0

Given ,

The polynomial is (x)² - 5x + k

The difference of zeroes of polynomial is 1

i.e α - β = 1

We know that ,

The sum of zeroes of polynomial is

  \underline{\large \sf \fbox{ \alpha  +  \beta  =  \frac{ - b}{a} }}

Thus ,

 \sf \Rightarrow \alpha  +  \beta  =  \frac{ - ( - 5)}{1}  \\  \\ \sf \Rightarrow  \alpha  +  \beta  = 5

And the product of zeroes of polynomial is

 \underline{ \large \sf \fbox{ \alpha  \beta  =  \frac{c}{a} }}

Thus ,

 \sf \Rightarrow \alpha  \beta  =  \frac{k}{1}  \\  \\ \sf \Rightarrow  \alpha  \beta  = k

 \sf Using \:  identity \:   \sf \fbox{ {(a + b)}^{2}  =  {(a - b)}^{2} + 4ab } \: , we \:  get

\sf \Rightarrow  {(5)}^{2}  =  {(1)}^{2}  +  4k \\  \\\sf \Rightarrow  25 = 1 + 4k  \\  \\ \sf \Rightarrow 4k= 24 \\  \\\sf \Rightarrow   k = 6

 \therefore \underline{  \bold{ \sf{The  \: value  \: of  \: k  \: is \:  6}}}

Similar questions