If alpha and beta are the zeros of quadratic polynomial p(x) =x^2-5x+6 , find a quadratic polynomial whose roots are alpha-1/alpha+1 , beta-1/beta+1.
Answers
Answered by
2
Answer:
Step-by-step explanation:
x2-5x+6=0
x2-3x-2x+6=0
x(x-3)-2(x-3)=0
(x-2)(x-3)=0
The zeroes are 2,3.
So,
alpha-1=2-1=1
alpha+1=2+1=3
alpha-1/alpha+1=1/3
beta-1=3-1=2
beta+1=3+1=4
beta-1/beta+1=2/4=1/2
sum of roots=1/3+1/2=5/6
product=1/3*1/2=1/6
formula=k(x2-(sum of roots) +product)
k(x2-(5/6)x+1/6)
k=6,so
6x2-5x+6=p(x)
Similar questions