Math, asked by pradipmedhi, 1 year ago

If alpha and beta are the zeros of quadratic polynomial p (x)=x2-k (x+1)-a evaluate (alpha +1)(beta+1)

Answers

Answered by ALTAF11
11
Hi Mate !!


Given equation :- p ( x ) = x² - k ( x + 1 ) - a


x² - kx - k - a ..... ( Equation )


• Sum of the Zeros

 =  \frac{ - coeff \: of \:  {x} }{coeff \: of \:  {x}^{2} }

 \alpha  +  \beta  =  \frac{k}{1}


• Product of Zeros :-

 =  \frac{constant \: term \: }{coefficient \: of \:  {x}^{2} }


 \alpha  \beta  =  \frac{ - k - a}{1}

♯ To evaluate :-

( \alpha  + 1)( \beta  + 1)

 =  \alpha  \beta  +  \alpha  +  \beta  + 1

 =  { - k - a} + k + 1

 = 1 - a
Answered by arfanmuhammed56
2

answer:

p(x)= x²-kx-k-p=0

a=1, b=-k, c=-k-p

∵α,β are zeroes of p(x)

∴α+β=-b/a⇒α+β=k

and αβ=c/a⇒αβ=-k-p

also(α+1)(β+1)=0

⇒αβ+α+β+1=0

⇒(-k-p)+k+1=0

              -p+1=0⇒p=1

Similar questions