Math, asked by poojapatel1, 1 year ago

if alpha and beta are the zeros of quadratic polynomial x^2-5x + 1,find the value of alpha cube+betacube

Answers

Answered by jaya1012
8
According to given sum,

 \alpha  \: and \:  \beta  \: are \: the \: roots \: of \:  {x}^{2}  - 5x + 1

we know that,

( { \alpha  +  \beta )}^{3}  =  { \alpha }^{3}  +  { \beta }^{3}  + 3 \alpha  \beta ( \alpha  +  \beta )

compare \: the \: given \: polynomial \: with \: a {x}^{2}  + bx + c

we get,

a=1 , b= -5 , c= 1

sum of zeroes of the polynomial = - b/a

 \alpha  +  \beta  =  \frac{ - b}{a}
 =  >  \:  \frac{ - ( - 5)}{1}

 =  >  \: 5

product of zeroes = c/a


 \alpha  \beta  =  \frac{c}{a}

 =  > 1

From the formula, we get


 { \alpha }^{3}  +  { \beta }^{3}  = (  { \alpha  +  \beta )}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta )

 =  >  \:  { \alpha }^{3}  +  { \beta }^{3}  =  \:  {5}^{3}  - 3(1)(5)

 =  > 125 - 15 = 110

Hence,

 { \alpha }^{3}  +  { \beta }^{3}  = 10

:-)Hope it helps u.
Answered by seema9969532548
0

Answer:

110

Step-by-step explanation:

According to given sum,

\alpha \: and \: \beta \: are \: the \: roots \: of \: {x}^{2} - 5x + 1αandβaretherootsofx

2

−5x+1

we know that,

( { \alpha + \beta )}^{3} = { \alpha }^{3} + { \beta }^{3} + 3 \alpha \beta ( \alpha + \beta )(α+β)

3

3

3

+3αβ(α+β)

compare \: the \: given \: polynomial \: with \: a {x}^{2} + bx + ccomparethegivenpolynomialwithax

2

+bx+c

we get,

a=1 , b= -5 , c= 1

sum of zeroes of the polynomial = - b/a

\alpha + \beta = \frac{ - b}{a}α+β=

a

−b

= > \: \frac{ - ( - 5)}{1}=>

1

−(−5)

= > \: 5=>5

product of zeroes = c/a

\alpha \beta = \frac{c}{a}αβ=

a

c

= > 1=>1

From the formula, we get

{ \alpha }^{3} + { \beta }^{3} = ( { \alpha + \beta )}^{3} - 3 \alpha \beta ( \alpha + \beta )α

3

3

=(α+β)

3

−3αβ(α+β)

= > \: { \alpha }^{3} + { \beta }^{3} = \: {5}^{3} - 3(1)(5)=>α

3

3

=5

3

−3(1)(5)

= > 125 - 15 = 110=>125−15=110

Hence,

{ \alpha }^{3} + { \beta }^{3} = 10α

3

3

=

Similar questions