if alpha and beta are the zeros of quadratic polynomial x^2-5x + 1,find the value of alpha cube+betacube
Answers
we know that,
we get,
a=1 , b= -5 , c= 1
sum of zeroes of the polynomial = - b/a
product of zeroes = c/a
From the formula, we get
Hence,
:-)Hope it helps u.
Answer:
110
Step-by-step explanation:
According to given sum,
\alpha \: and \: \beta \: are \: the \: roots \: of \: {x}^{2} - 5x + 1αandβaretherootsofx
2
−5x+1
we know that,
( { \alpha + \beta )}^{3} = { \alpha }^{3} + { \beta }^{3} + 3 \alpha \beta ( \alpha + \beta )(α+β)
3
=α
3
+β
3
+3αβ(α+β)
compare \: the \: given \: polynomial \: with \: a {x}^{2} + bx + ccomparethegivenpolynomialwithax
2
+bx+c
we get,
a=1 , b= -5 , c= 1
sum of zeroes of the polynomial = - b/a
\alpha + \beta = \frac{ - b}{a}α+β=
a
−b
= > \: \frac{ - ( - 5)}{1}=>
1
−(−5)
= > \: 5=>5
product of zeroes = c/a
\alpha \beta = \frac{c}{a}αβ=
a
c
= > 1=>1
From the formula, we get
{ \alpha }^{3} + { \beta }^{3} = ( { \alpha + \beta )}^{3} - 3 \alpha \beta ( \alpha + \beta )α
3
+β
3
=(α+β)
3
−3αβ(α+β)
= > \: { \alpha }^{3} + { \beta }^{3} = \: {5}^{3} - 3(1)(5)=>α
3
+β
3
=5
3
−3(1)(5)
= > 125 - 15 = 110=>125−15=110
Hence,
{ \alpha }^{3} + { \beta }^{3} = 10α
3
+β
3
=