If alpha and beta are the zeros of the given polynomial p(x)= x^2-x-4 then find the value of 1/alpha + 1/beta - alpha*beta
Answers
P(x) = x²-x-4
Sum of zereos =-b/a
Alpha + beta = -(-1/1)=1
Product of zereos=c/a
Alpha*beta= -4
1/alpha +1/ beta ( taking lcm)
Alpha + beta / alpha*beta
1/-4= -1/4
So -1/4 is the answer
Answer:
The value of ( 1 / α ) + ( 1 / β ) - αβ is 15 / 4.
Step-by-step-explanation:
The given quadratic polynomial is x² - x - 4.
We have given that,
α and β are the zeros of quadratic polynomial.
Comparing the quadratic polynomial with ax² + bx + c, we get,
- a = 1
- b = - 1
- c = - 4
We know that,
Sum of zeros = - b / a
⇒ α + β = - ( - 1 ) / 1
⇒ α + β = 1
And,
Product of zeros = c / a
⇒ αβ = - 4 / 1
⇒ αβ = - 4
Now,
( 1 / α ) + ( 1 / β ) - αβ = [ ( α + β ) / αβ ] - αβ
⇒ ( 1 / α ) + ( 1 / β ) - αβ = ( 1 / - 4 ) - ( - 4 )
⇒ ( 1 / α ) + ( 1 / β ) - αβ = ( - 1 / 4 ) + 4
⇒ ( 1 / α ) + ( 1 / β ) - αβ = ( - 1 + 16 ) / 4
⇒ ( 1 / α ) + ( 1 / β ) - αβ = 15 / 4
∴ The value of ( 1 / α ) + ( 1 / β ) - αβ is 15 / 4.