Math, asked by samanvo4, 1 month ago

If alpha and beta are the zeros of the o
polynomial f(x)=x^+x+1 then find the value of 1/alpha and 1/beta​

Answers

Answered by SparklingBoy
131

Appropriate Question :

If α and β are the zeros polymomial f(x) = x² + x + 1 The Find The Value of  \sf\dfrac{1}{\alpha}+\dfrac{1}{\beta} 

Given :

α and β are the zeros polymomial

f(x) = x² + x + 1.

To Find :

Value of  \sf\dfrac{1}{\alpha}+\dfrac{1}{\beta} 

Main Concept :

☆ Relationship between Zeros and coefficiants of a Quadratic Polynomial :

For a qudratic polynomial of the Form ax² + bx + c

  • Sum of Zeros = \sf-\dfrac{b}{a}

  • Product of Zeros = \sf\dfrac{c}{a}

Solution :

We Have ,

α and β are the zeros polymomial

f(x) = x² + x + 1.

Hence ,

\large \pmb{ \alpha + \beta = - 1 } \: \: \:----(1) \: \\

 \large\pmb{ \alpha \beta = 1} \: \: \:---- (2)

Now,

\large \dfrac{1}{ \alpha } + \frac{1}{ \beta } \\

 \large \sf = \frac{ \beta + \alpha }{ \alpha \beta }\\

Using (1) and (2) :

\large\sf = \frac{ - 1}{1} \\ \\ = -1 \\

 \purple{ \Large :\longmapsto  \underline { \pmb{\boxed{{  \frac{1}{ \alpha } + \frac{1}{ \beta } = - 1 } }}}}

Answered by MяMαgıcıαη
79

Correct QuesTion

  • If alpha and beta are the zeros of the of polynomial x² + x + 1 then find the value of 1/alpha + 1/beta.

Required AnsweR

  • Value of 1/alpha + 1/beta is -1

Step By Step Explanation

Given that:

  • Alpha and beta are the zeros of the of polynomial f(x) = x² + x + 1

To Find:

  • The value of 1/alpha + 1/beta

Solution:

Things to know before solving :

  • \pmb{\boxed{\bf{\purple{\alpha + \beta = \dfrac{-b}{a}}}}}

  • \pmb{\boxed{\bf{\red{\alpha\beta = \dfrac{c}{a}}}}}

Finding value of 1/alpha + 1/beta :

1/alpha + 1/beta = \sf \dfrac{1}{\alpha} + \dfrac{1}{\beta}

\:

1/alpha + 1/beta = \sf \dfrac{\beta + \alpha}{\alpha\beta}

\:

1/alpha + 1/beta = \sf \dfrac{\dfrac{-b}{a}}{\dfrac{c}{a}}

\:

1/alpha + 1/beta = \sf \dfrac{\dfrac{-1}{1}}{\dfrac{1}{1}}

\:

1/alpha + 1/beta = \sf \dfrac{-1}{1}\:\times\:\dfrac{1}{1}

\:

1/alpha + 1/beta = \sf \dfrac{-1\:\times\:1}{1\:\times\:1}

\:

1/alpha + 1/beta = \sf \dfrac{-1}{1}

\:

➦ 1/alpha + 1/beta = \pmb{\underline{\boxed{\bf{\pink{-1}}}}}

Hence, value of 1/alpha + 1/beta is -1.

Learn more on brainly :

Question :

  • If alpha and beta are the zeroes of polynomial p(x) = x² - 7x + 10, find the quadratic polynomial with zeroes (-alpha) and (-beta).

Answer :

  • https://brainly.in/question/42822704

More related Questions & Answers :

  • https://brainly.in/question/41126661
  • https://brainly.in/question/41548657
  • https://brainly.in/question/41646979
  • https://brainly.in/question/42964609
  • https://brainly.in/question/43027706

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions