Math, asked by Anonymous, 3 days ago

If alpha and beta are the zeros of the polynomial 2x^2-5x+7, then find the polynomial whose zeros are 2alpha+3beta and 3alpha+2beta​

Answers

Answered by amansharma264
11

EXPLANATION.

α and β are the zeroes of the polynomial.

⇒ 2x² - 5x + 7.

As we know that,

Sum of the zeroes of quadratic polynomial.

⇒ α + β = - b/a.

⇒ α + β = - (-5)/2 = 5/2.

Products of the zeroes of quadratic polynomial.

⇒ αβ = c/a.

⇒ αβ = 7/2.

To find polynomial :

Whose zeroes are 2α + 3β  and  3α + 2β.

Sum of the zeroes of new quadratic polynomial.

⇒ (2α + 3β) + (3α + 2β).

⇒ (5α + 5β).

⇒ 5(α + β) = 5(5/2) = (25)/(2).

⇒ (α + β)' = (25/2).

Products of the zeroes of new quadratic polynomial.

⇒ (2α + 3β)(3α + 2β).

⇒ 2α(3α + 2β) + 3β(3α + 2β).

⇒ 6α² + 4αβ + 9αβ + 6β².

⇒ 6α² + 6β² + 4αβ + 9αβ.

⇒ 6[α² + β²] + 13αβ.

As we know that,

Formula of :

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in the equation, we get.

⇒ 6[(α + β)² - 2αβ] + 13αβ.

Put the values in the equation, we get.

⇒ 6[(5/2)² - 2(7/2)] + 13(7/2).

⇒ 6[25/4 - 7] + (91/2).

⇒ 6[(25 - 28)/4] + (91/2).

⇒ 6[- 3/4] + (91/2).

⇒ - 18/4 + 91/2.

⇒ - 9/2 + 91/2.

⇒ 82/2 = 41

⇒ (αβ)' = 41.

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

x² - (25/2)x + 41.

Similar questions