Math, asked by shafiyasheikh09, 11 days ago

if alpha and beta are the zeros of the polynomial 2x^2+7x+5 then find 
\frac{1}{ \alpha } + \frac{1}{ \beta }α1​+β1​ 
plz help..

Wrong answer will be reported..​

Answers

Answered by skesar767
0

Answer:

-7/5

Step-by-step explanation:

check the picture for correct answer

Attachments:
Answered by BrainlyArnab
3

 \huge \boxed{ \blue{ \frac{ - 7}{5} }}

Step-by-step explanation:

QUESTION :-

If  \alpha and  \beta are zeroes of the polynomial 2x² + 7x + 5, then find -

  \dfrac{1}{ \alpha } +  \dfrac{1}{ \beta }

_________________________

SOLUTION :-

2x² + 7x + 5

In the standard form of quadratic equation (ax² + bx + c), here -

  • a = 2
  • b = 7
  • c = 5

We know that,

sum of zeroes  \alpha + \beta = \frac{-b}{a} = \frac{-7}{2}

product pf zeroes  \alpha \beta = \frac{c}{a} = \frac{5}{2}

__________________________

Now,

  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\  \\  =  >  \frac{ \alpha    +  \beta }{ \alpha  \beta } ... \tiny{taking \: LCM \: as \:  \alpha  \beta } \\

Put the value of  \alpha + \beta \: \& \alpha \beta

 \\  =  >  \frac{ \:   \frac{ - 7}{2}  }{ \frac{5}{ \: 2} }  \\  \\  \\  =  >  \frac{ - 7}{2}  \div  \frac{5}{2}  \\  \\  =  >  \frac{ - 7}{ \cancel{2 }}  \times  \frac{ \cancel{2}}{5}  \\  \\   =  >  \frac{ - 7}{5}

So,

The value of

 \large \frac{1}{ \alpha }  +  \frac{1}{ \beta  }  =  \frac{ - 7}{5}

________________________

Hope it helps.

#BeBrainly

Similar questions