If alpha and beta are the zeros of the polynomial 2x2+5x+k, find k such that (alpha)2+(beta)2+(alpha)*(beta)=24
Answers
Answered by
153
: α and β are zeroes of polynomial
2x² + 5x + k
THEN
α+β = -5/2 , αβ = k/2
⇒ (α+β)² = (-5/2)²
⇒ α²+ β²+ 2αβ = 25/4
⇒ α²+ β²+ αβ+ αβ = 25/4
⇒ 24 + k/2=25/4
⇒ k/2 = 25/4 - 24
⇒ k/2 = 25/4 - 96/4
⇒ k/2 = -71/4
⇒k = -71/4 * 2
⇒k = -71/2
2x² + 5x + k
THEN
α+β = -5/2 , αβ = k/2
⇒ (α+β)² = (-5/2)²
⇒ α²+ β²+ 2αβ = 25/4
⇒ α²+ β²+ αβ+ αβ = 25/4
⇒ 24 + k/2=25/4
⇒ k/2 = 25/4 - 24
⇒ k/2 = 25/4 - 96/4
⇒ k/2 = -71/4
⇒k = -71/4 * 2
⇒k = -71/2
Answered by
32
Answer:
-71/2
Step-by-step explanation:
α and β are zeroes of polynomial
2x² + 5x + k
THEN
α+β = -5/2 , αβ = k/2
⇒ (α+β)² = (-5/2)²
⇒ α²+ β²+ 2αβ = 25/4
⇒ α²+ β²+ αβ+ αβ = 25/4
⇒ 24 + k/2=25/4
⇒ k/2 = 25/4 - 24
⇒ k/2 = 25/4 - 96/4
⇒ k/2 = -71/4
⇒k = -71/4 * 2
⇒k = -71/2
Similar questions