Math, asked by Anonymous, 10 months ago

If alpha and beta are the zeros of the polynomial 3x^2 - 4x - 7 then find the sum of their reciprocals.

Answers

Answered by Abhishek474241
8

✪AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • A polynomial
  • 3x²-4x-7

{\sf{\green{\underline{\large{To\:Find}}}}}

  • sum of thier reciprocal
  • Relationship between cofficient

{\sf{\pink{\underline{\Large{Explanation}}}}}

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\rightarrow\tt\alpha{+}\beta{=}\frac{4}{3}

&

\rightarrow\tt\alpha{\times}\beta{=}\frac{-7}{3}

1/a + 1/b

=>{a+b}/ab

=>4/3 × 3/-7

=>-4/7

Additional Information

\rightarrow\tt\alpha{+}\beta{=}\dfrac{4}{3}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{-7}{3}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Answered by BrainlyIAS
8

\bigstar Given :

  • If α and β are the zeros of the polynomial 3x² - 4x - 7

\bigstar To Find :

  • The sum of their reciprocals

\bigstar Solution :

Compare given equation 3x²-4x-7 with ax²+bx+c , we get ,

  • a = 3 , b = - 4 , c - 7

Sum of zeroes ,

\alpha +\beta =\frac{-b}{a}\\\\ \implies \alpha +\beta =\frac{-(-4)}{3} \\\\\implies\bold{ \alpha +\beta =\frac{4}{3} }

Product of zeroes ,

\alpha \beta =\frac{c}{a}\\\\ \implies\bold{ \alpha \beta =\frac{-7}{3} }

So , Sum of reciprocals ,

\frac{1}{\alpha } +\frac{1}{\beta } \\\\\implies \frac{\alpha+\beta }{\alpha \beta } \\\\\implies \frac{\frac{4}{3} }{\frac{-7}{3} } \\\\\implies \bold{\bf{\blue{-\frac{4}{7} }}}

Similar questions