Math, asked by vansh5206, 1 year ago

If alpha and beta are the zeros of the polynomial 3x square + 2x - 6 then find the value of Alpha minus beta ;Alpha square plus beta Square; One Upon alpha plus one upon beta;
Alpha Cube + beta cube

Answers

Answered by kavya1321
87

HERE IS YOUR ANSWER MATE

HOPE IT HELPS YOU

Attachments:
Answered by aquialaska
115

Answer:

Given Quadratic Polynomial is 3x² + 2x -6 and α , β are zeroes.

Using relationship between coefficeints and zeroes we get,

\alpha+\beta=\frac{-b}{a}=\frac{-2}{3}

\alpha\,\beta=\frac{c}{a}=\frac{-6}{3}=-2

1).

\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta

\alpha^2+\beta^2=(\frac{-2}{3})^2-2(-2)

\alpha^2+\beta^2=\frac{4}{9}+4

\alpha^2+\beta^2=\frac{40}{9}

2).

(\alpha-\beta)^2=\alpha^2+\beta^2-2\alpha\beta

(\alpha-\beta)^2=\frac{40}{9}-2(-2)

(\alpha-\beta)^2=\frac{40}{9}+4

(\alpha-\beta)^2=\frac{76}{9}

\alpha-\beta=\pm\frac{\sqrt{76}}{3}

3).

\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha\,\beta}=\frac{\frac{-2}{3}}{-2}=\frac{1}{3}

4).

\alpha^3+\beta^3=(\alpha+\beta)(\alpha^2+\beta^2-\alpha\,\beta)

\alpha^3+\beta^3=(\frac{-2}{3})(\frac{40}{9}-(-2))

\alpha^3+\beta^3=(\frac{-2}{3})(\frac{40}{9}+2)

\alpha^3+\beta^3=\frac{-2}{3}\frac{58}{9}

\alpha^3+\beta^3=\frac{-116}{27}

Similar questions