Math, asked by sohamjainsoham884, 1 year ago

If alpha and beta are the zeros of the polynomial 4x2-5x-1 then find the value of a^2-b^2

Answers

Answered by Anonymous
0

Answer:

I hope it would help you

Attachments:
Answered by Anonymous
3

Answer:

Given:

⇒ If alpha and beta are the zeros of the polynomial 4x² - 5x-1.

Find:

⇒ Find the value of a² - b².

According to the question:

\sf Alpha + Beta = \dfrac{5}{4} = Sum \: of \: zeros.

\sf \dfrac{-1}{4} = Product \: of \: zeros

Calculations:

\sf ⇒ (Alpha - Beta)^2 = (Alpha + Beta)^2 - (4 \: Alpha Beta)

\sf ⇒ (Alpha - Beta)^2 = (\dfrac{5}{4})^2 - 4 (\dfrac{-1}{4})

\sf ⇒(Alpha - Beta)^2 = \dfrac{25}{16} + 1

\sf ⇒(Alpha - Beta)^2 = \dfrac{25 + 16}{16}

\sf ⇒(Alpha - Beta)^2 = \dfrac{41}{6}

\sf ⇒(Alpha + Beta)^2 = (Alpha + Beta) (Alpha - Beta)

\sf ⇒ \dfrac{5}{4} \times \dfrac{\sqrt{41}}{4}

{\sf{\underline{\boxed{\green{\sf{ \dfrac{5 \sqrt{41}}{16}}}}}}}

Similar questions