Math, asked by atharvag8017, 10 months ago

If alpha and beta are the zeros of the polynomial 5 x square - 7 x + 1 then find the value of Alpha upon beta + beta upon Alpha

Answers

Answered by Anonymous
24

\text{Given}

\mathsf{Polynomial, f(x) = 5x^2 - 7x + 1}\\ \\

\text{To find}

\mathsf{Value \: of \: \frac{\alpha}{\beta} + \frac{\beta}{\alpha}}\\ \\

\text{Solution}

\text{For f(x), let us find out the :}

\mathtt{\red{\bigstar \: Sum\: of \: zeroes = \Large{\frac{-(coefficient\: of\: x) }{coefficient\: of\: x^2}}}}

\mathtt{\rightarrow\: \alpha + \beta = \frac{-(-7)}{5}}

\mathtt{\rightarrow\: \alpha + \beta = \frac{7}{5}}

\mathtt{\red{\bigstar \: Product\: of \: zeroes = \Large{\frac{constant\: term }{coefficient\: of\: x^2}}}}

\mathtt{\rightarrow\: \alpha \beta = \frac{1}{5}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\mathtt{\implies\: \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}}

\mathtt{\rightarrow\: \frac{( \alpha + \beta )^{2} - 2 \alpha \beta}{\alpha \beta}}

\Large{\mathtt{\rightarrow\: \frac{(\frac{1}{5})^{2} - 2(\frac{1}{5})}{\frac{1}{5}}}}

\Large{\mathtt{\rightarrow\: \frac{(\frac{49}{25} - \frac{2}{5})}{\frac{1}{5}}}}

\Large{\mathtt{\rightarrow\: \frac{49 - 10}{25} × 5}}

\Large{\mathtt{\rightarrow\: \frac{39}{25} × 5 }}

\Huge{\fbox{\mathtt{\green{\rightarrow\: \frac{39}{5}}}}}

Answered by anubhavd373
0

Answer:

ans is 39/5

pls mark me brainliest

Similar questions