Math, asked by maangurjitmaan, 10 months ago

if alpha and beta are the zeros of the polynomial 6 y square - 2 + Y, then the value of Alpha Beta + beta Alpha is ​

Answers

Answered by ItzAditt007
6

\huge{\mathcal{\blue{\underline{\underline{\pink{HeYa!!!}}}}}}

{\large{\purple{\mathbb{ANSWER}}}}

{\large{\blue{\bold{\underline{Given:-}}}}}

Alpha and beta

Are zeroes of polynomial,

=》 6y²+y-2.

{\large{\blue{\bold{\underline{To\:Find:-}}}}}

Alpha beta + Beta alpha

{\large{\blue{\bold{\underline{Things\:used:-}}}}}

▪︎ In a quadratic equation product of zeroes

= Constant term/Coefficient of x²

{\large{\red{\boxed{\bold{=\:c/a}}}}}

{\large{\blue{\bold{\underline{Therefore:-}}}}}

=》 Alpha beta + beta alpha = Product of zeroes

= Alpha Beta + Alpha Beta

{Since a×b = b×a}

= (-2)/6 + (-2)/6

= -1/3 + -1/3.

= -1/3 - 1/3.

= -1-1/3.

{\large{\red{\boxed{\bold{=\:-2/3}}}}}

Hope this will help you if it HELPS then plz mark my answer as BRAINLIEST.

And remember to always keep a smile on face:D

<marquee>✌✌THANKS✌✌</marquee>

Answered by ishwarsinghdhaliwal
2

6y²+y-2=0

Comparing the given polynomial with ax²+ bx + c=0

a=6, b=1 and c=-2

Sum of zeroes=(α+β)=-b/a=-1/6

Product of zeroes = (αβ) = c/a=-2/6= -1/3

Now

\alpha  \beta  +  \beta  \alpha  =  \frac{ - 1}{3}  +  \frac{ - 1}{3}  =  \frac{ - 2}{3}

Similar questions