if alpha and beta are the zeros of the polynomial ax square + bx + c .
then find the value of
1)alpha/beta + beta/alpha
2)1/alpha cube + 1/beta cube
Answers
Answered by
52
Solution:
→ α + ß = - Coefficient of x/Coefficient of x²
→ αß = Constant Term/Coefficient of x²
In ax² + bx + c we have
→ α + ß = - b/a
→ αß = c/a
1) α/ß + ß/α
→ (α² + ß²)/αß → [(α + ß)² - 2αß]/αß
→ [(- b/a)² - 2c/a]/(c/a)
→ (b²/a² - 2ac/a²)/(c/a)
→ (b² - 2ac)/a² × a/c
→ (b² - 2ac)/ac or b²/ac - 2
2) 1/α³ + 1/ß³
→ (α³ + ß³)/(αß)³
→ (α + ß)(α² + ß² - αß)/(αß)³
→ (- b/a){(α + ß)² - 2αß - αß}/(αß)³
→ (- b/a){b²/a² - 3ac/a²}/(c/a)
→ - b/a × (b² - 3ac)/a² × a/c
→ - b/a × (b² - 3ac)/ac
→ - b(b² - 3ac)/a²c
Anonymous:
Nice
Answered by
45
Answer:
Step-by-step explanation:
Given Polynomial:
Also, the zeroes are alpha and beta.
We know that:
and
Now, coming to the Question
Similar questions