Math, asked by Kingzozo, 10 months ago

if alpha and beta are the zeros of the polynomial ax square + bx + c .
then find the value of
1)alpha/beta + beta/alpha
2)1/alpha cube + 1/beta cube​

Answers

Answered by ShuchiRecites
52

Solution:

→ α + ß = - Coefficient of x/Coefficient of x²

→ αß = Constant Term/Coefficient of x²

In ax² + bx + c we have

→ α + ß = - b/a

→ αß = c/a

1) α/ß + ß/α

→ (α² + ß²)/αß → [(α + ß)² - 2αß]/αß

→ [(- b/a)² - 2c/a]/(c/a)

→ (b²/a² - 2ac/a²)/(c/a)

→ (b² - 2ac)/a² × a/c

→ (b² - 2ac)/ac or b²/ac - 2

2) 1/α³ + 1/ß³

→ (α³ + ß³)/(αß)³

→ (α + ß)(α² + ß² - αß)/(αß)³

→ (- b/a){(α + ß)² - 2αß - αß}/(αß)³

→ (- b/a){b²/a² - 3ac/a²}/(c/a)

→ - b/a × (b² - 3ac)/a² × a/c

→ - b/a × (b² - 3ac)/ac

- b(b² - 3ac)/a²c


Anonymous: Nice
Answered by Anonymous
45

Answer:

\large\boxed{\sf{(1)\frac{ {b}^{2}  - 2ac}{ac} }}

\large\boxed{\sf{(2)\frac{3abc -  {b}^{3} }{ {c}^{3} } }}

Step-by-step explanation:

Given Polynomial:

a {x}^{2}  + bx + c

Also, the zeroes are alpha and beta.

We know that:

 \alpha  +  \beta  =  -  \frac{b}{a}

and

 \alpha  \beta  =  \frac{c}{a}

Now, coming to the Question

(1) \dfrac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \\  \\  =  \dfrac{ { \alpha }^{2}  +   { \beta }^{2}  }{ \alpha  \beta }  \\  \\  =  \dfrac{ {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }{ \alpha  \beta }  \\  \\  =  \dfrac{ {( -  \frac{b}{a} )}^{2}  - 2 \frac{c}{a} }{ \frac{c}{a} }  \\  \\  =  \dfrac{ \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{2ac}{ {a}^{2} } }{ \frac{ac}{ {a}^{2} } }  \\  \\  =  \dfrac{ {b}^{2}  - 2ac}{ac}

(2) \frac{1}{ { \alpha }^{3} }  +  \frac{1}{ { \beta }^{ 3} }  \\  \\  =  \dfrac{ { \alpha }^{3} +  { \beta }^{3}  }{ {( \alpha  \beta )}^{3} }  \\  \\  =  \dfrac{( \alpha  +  \beta )( { \alpha }^{2}  -  \alpha  \beta  +  { \beta }^{2} )}{ {( \alpha  \beta )}^{3} }  \\  \\  =  \dfrac{ -  \frac{b}{a}( {( \alpha  +  \beta ) }^{2}  - 3 \alpha  \beta)  }{ {( \frac{c}{a}) }^{3} }  \\  \\  =  \dfrac{ -  \frac{b}{a} ( \frac{ {b}^{2} }{ {a}^{2} }  - 3 \frac{c}{a} )}{ \frac{ {c}^{3} }{ {a}^{3} } }  \\  \\  =  \dfrac{ -  \frac{ {b}^{3} }{ {a}^{3}  } +  \frac{3abc}{ {a}^{3} }  }{ \frac{ {c}^{3} }{ {a}^{3} } }  \\  \\  =  \dfrac{3abc -  {b}^{3} }{ {c}^{3} }

Similar questions