Math, asked by rijulsitpure, 11 months ago

if alpha and beta are the zeros of the polynomial ax2+bx+c find the value of (alpha+1) (beta+1)

Solve it the clearest for brainliest

Answers

Answered by sweetyheree
8

ax²+bx+c is the polynomial

let

 \alpha \\   \beta \\ be \: the \: roots

 \alpha +   \beta  =  \frac{ - b}{a}

 \alpha  \beta  =  \frac{c}{a}

now,

( \alpha  + 1)( \beta  + 1) =  \\  \alpha  \beta  +  \alpha  +  \beta  + 1

 \frac{c}{a}  + ( \frac{ - b}{a}  + 1)

 \frac{c - b}{a}  + 1

take lcm

 \frac{a + c - b}{ a}

ⓈⓉⒶⓎ ⓈⒶⒻⒺ

Answered by Abhishek474241
2

Given

A polynomial ax²+bx+c

To Find

(\alpha+1)(1+\beta)

Solution

If the zeroes are (\alpha)&(\beta)

We know that

\alpha+\beta=\frac{-b}{a}

&

\alpha\times\beta=\frac{c}{a}

Putting values in it

(\alpha+1)(1+\beta)

Solving it

\imples(\alpha\times\beta+\alpha+\beta+1)

=>\frac{-b}{a}+\frac{c}{a}+1

=>\frac{-b+c+a}{a}

Similar questions