Math, asked by vinothamaran94, 1 year ago

if alpha and beta are the zeros of the polynomial of a^2-5x+6, find the 1/alpha^2 +1/beta^2​

Answers

Answered by antareepray2
2

Let,

f(x) =  {x}^{2}  - 5x + 6

Therefore,

 {x}^{2}  - 5x + 6  = 0 \\  =  >  {x}^{2}  - 2x - 3x + 6 = 0 \\  =  > x(x - 2) - 3(x - 2) = 0 \\  =  > (x - 3)(x - 2) = 0 \\  =  > x = 3 \:  \: or \:  \: x = 2

Hence,

 \alpha  = 3 \:  \: and \:  \:  \beta  = 2

So,

 \frac{1}{ { \alpha }^{2} }  +  \frac{1}{ { \beta }^{2} }  \\  =  \frac{1}{9}  +  \frac{1}{4}  \\  =   \frac{13}{36}

HOPE THIS COULD HELP!!!

Answered by Mrbhagat
0

let

f(x) = {x}^{2}  - 5x - + 6

so,

sum of zeros=

 \alpha  +  \beta  =  \frac{ - b}{a}  =   \frac{ - ( - 5)}{1}  = 5

Product of zeros=

 \alpha  \times  \beta  =  \frac{c}{a}  =  \frac{6}{1}  = 6

Now,

 \frac{1}{  { \alpha }^{2} }  +  \frac{1}{ { \beta }^{2} }  =  \frac{  { \alpha }^{2} +  { \beta }^{2}  }{ { \alpha }^{2} \times  { \beta }^{2}  }  =  \frac{ { (\alpha  +  \beta )}^{2}  - 2 \alpha  \beta }{ { \alpha }^{2}  \times  { \beta }^{2} }  =  \frac{  { (\alpha +  \beta ) }^{2} }{ { \alpha }^{2}  \times  { \beta }^{2} }  -  \frac{2}{ \alpha  \beta }  =  \frac{ {5}^{2} }{ {6}^{2} }  -  \frac{2}{6}  =  \frac{25}{36}  -  \frac{2}{6}  =  \frac{25 - 12}{36}  =  \frac{13}{36}

Similar questions