Math, asked by dastageerdesai1976, 11 months ago

if alpha and beta are the zeros of the polynomial P(x)= 3x²-12+15 then find the value of beta/alpha +alpha/beta​

Answers

Answered by TrickYwriTer
2

Step-by-step explanation:

Given -

α and β are zeroes of polynomial

p(x) = 3x² - 12 + 15

To Find -

Value of β/α + α/β

  • » β² + α²/αβ

3x² - 12 + 15

here,

a = 3

b = -12

c = 15

As we know that :-

  • α + β = -b/a

» -(-12)/3

» 12/3

  • » 4 ........ (i)

And

  • αβ = c/a

» 15/3

  • » 5 ........ (ii)

Squaring both sides of (i), we get :

(α + β)² = (4)²

» α² + β² + 2αβ = 16

» α² + β² + 2(5) = 16

» α² + β² = 16 - 10

  • » α² + β² = 6

Now,

The value of α² + β²/αβ is :

» 6/5

Hence,

The value of α/β + β/α is 6/5

Answered by silentlover45
0

  \huge \mathfrak{Answer:-}

\large\underline\mathrm{The \: value \: of  \: α² \: + \: β²/αβ \: = \: 6/5}

\large\underline\mathrm{Given:-}

  • α and β are zeroes of the polynomial P(x)= 3x²-12.+15.

\large\underline\mathrm{To \: find}

  • Value of β/α + α/β

\implies β² + α²/αβ

\implies 3x²-12+15

\implies a = 3

\implies b = -12

\implies c = 15

\large\underline\mathrm{Solution}

\implies α + β = -b/a

\implies -(-12)/3

\implies 4. .....(1)

\large\underline\mathrm{and}

\implies (α + β)² = (4)²

\implies α² + β² + 2αβ = 16

\implies α² + β² + 2(5) = 16

\implies α² + β² + 10 = 16

\implies α² + β² = 16 - 10

\implies α² + β² = 6

\large\underline\mathrm{hence,}

\large\underline\mathrm{The \: value \: of  \: α² \: + \: β²/αβ \: = \: 6/5}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions