Math, asked by vaishnavie4179, 10 months ago

If alpha and beta are the zeros of the polynomial p(x)=9x square + 9x + 2, find the value of alpha square + beta square.

Answers

Answered by mddilshad11ab
113

\sf\large\underline{Given:}

  • \rm{Polynomial\:P(x)=9x^2+9x+2}

\sf\large\underline{To\: Find:}

  • \rm{The\: value\:of\alpha^2+\beta^2}

\sf\large\underline{Solution:}

  • At first calculate the zeroes by using the formula]

\sf\large\underline{Formula\:used:}

\rm{\implies \alpha+\beta=-\dfrac{b}{a}}

  • Here, a=9 , b=9 , c=2

\rm{\implies \alpha+\beta=-\dfrac{9}{9}}

\rm{\implies \alpha+\beta=-1}

\rm{\implies \alpha\times\beta=\dfrac{c}{a}}

\rm{\implies \alpha\times\beta=\dfrac{2}{9}}

  • Now calculate the the value of given expression]

\rm{\implies Here,\: using\:identies}

\rm{\implies a^2+b^2=(a+b)^2-2ab}

  • If we compared with above expression the condition is same in both ,so]

\rm{\implies \alpha^2+\beta^2= (\alpha+\beta)^2-2\alpha\:\beta}

  • Now, putting the value here]

\rm{\implies \alpha^2+\beta^2=(-1)^2-2(\dfrac{2}{9}}

\rm{\implies \alpha^2+\beta^2=1-\dfrac{4}{9}}

\rm{\implies \alpha^2+\beta^2=\dfrac{9-4}{9}}

\rm{\implies \alpha^2+\beta^2=\dfrac{5}{9}}

\sf\large{Hence,}

\rm{\implies The\: value\:of\alpha^2+\beta^2=\dfrac{5}{9}}

Answered by pn9505323
1

Answer:

ans in in above pick

Step-by-step explanation:

please make me brain list

Attachments:
Similar questions