Math, asked by karthikc1495, 10 months ago

if alpha and beta are the zeros of the polynomial P (X )
 = 3 {x}^{2}  - 12x + 15
find the value of Alpha square plus beta square​

Answers

Answered by ItSdHrUvSiNgH
1

Step-by-step explanation:

\huge\underline{\underline{\sf ANSWER}} \\  \alpha  \: and \:  \beta  \: are \: roots \: of \:  \\ 3 {x}^{2}  - 12x + 15 \\  \\  \alpha  +  \beta  =  -  \frac{b}{a} =   -  (\frac{ - 12}{3} ) =  \frac{12}{3}  = 4 \\   \alpha  \beta  =  \frac{c}{a}  =  \frac{15}{3}  = 5 \\  \\ for \:  { \alpha }^{2}  \: and \:  { \beta }^{2}  =  >  \\  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  =   { \alpha }^{2}  +  { \beta }^{2}  \\   { \alpha }^{2}  +  { \beta }^{2}  =  {(4)}^{2}  - 2(5) \\  { \alpha }^{2}  -  { \beta }^{2}  = 6........(1) \\  \\  { \alpha }^{2}  { \beta }^{2}  =  {5}^{2}  = 25.........(2) \\  \\  {x}^{2}  - (sum \: of \: roots)x + \\  (product \: of \: roots) \\  {x}^{2}  - 6x + 25 = 0

Similar questions