Math, asked by gargvidusi, 1 month ago

if alpha and beta are the zeros of the polynomial x^2-5x+4 ,find the value of 1/alpha +1/beta -2 alpha beta​

Answers

Answered by arpit26m4
0

Answer:

Step-by-step explanation:

Attachments:
Answered by ajay8949
1

 \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{  {x}^{2}  - 5x + 4} = 0

  \:  \:  \:  \:  \:  \:  \: \sf {{x}^{2}  - 4x - x + 4 = 0}

  \:  \:  \:  \: \sf{ x(x - 4) - 1(x - 4) = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{(x - 1)(x - 4) = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \sf{x = 1 \: and \: x = 4}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \red{\alpha  = 1} \: and \:    \sf{\blue{\beta  = 4}}

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \frac{1}{ \alpha }  +  \frac{1}{ \beta }  - 2 \alpha  \beta } \\

 \:  \:  \:  =  >  \:  \:  \:  \:  \:  \:  \frac{1}{1}  +  \frac{1}{4}  - 2(1)(4) \\

 \:  \:  \: =  > \:  \:  \: \:  \:  \: \:  1 +  \frac{1}{4}  - 8 \\

 \:  \:  \:  \:  \:  \:  =  >  \:  \:  \sf{ \frac{4 + 1 - 32}{4} } \\

 =  >    \:  \:  \: \sf { \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{5 - 32}{4}}  \\

 =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  \:  \:  \frac{27}{4}  \\

Similar questions