Math, asked by mehjabeen20031, 10 months ago

if alpha and beta are the zeros of the polynomial X square + 7x +7 then find the value of :-
(part 1) Alpha square plus beta square
( part 2 )one upon alpha plus one upon beta ​

Answers

Answered by Anonymous
18

<body bgcolor="yellow"><font color="black">

 \huge\red{\mathbb{♡Answer! ♡}}

☺✌◦•●◉✿ α+β=-5/3

αβ=7/3

ᴀˡˢᵒ

(α+β)^2=α^2+β^2+2αβ

ᴘᵘᵗ ᵛᵃˡᵘᵉˢ ᵗᵒ ᵍᵉᵗ α^2+β^2

ɴᵒʷ

1/α^3 + 1/β^3 =(α^3+β^3)/α^3β^3

={(α+β)(α^2+β^2-αβ)}/(αβ)^3

ɴᵒʷ ʲᵘˢᵗ ᵖᵘᵗ ᵗʰᵉ ᵛᵃˡᵘᵉˢ ᵗᵒ ᵍᵉᵗ ⁱᵗ

1.2ᵏ ᵛⁱᵉʷˢ

ʟᵉᵗ ᵃ,ᵇ ᵇᵉ ᵗʰᵉ ʳᵒᵒᵗˢ

ᴛʰᵉⁿ ᵃ+ᵇ=-5/3

ᵃᵇ=7/3

(1/ᵃ^3)+(1/ᵇ^3)=ᵃ^3+ᵇ^3/(ᵃᵇ)^3. ᴇᵠⁿ (1)

(ᵃ+ᵇ)^3=ᵃ^3+ᵇ^3+3ᵃᵇ(ᵃ+ᵇ)

ʜᵉⁿᶜᵉ ᵃ^3+ᵇ^3=(-5/3)^3–3×7/3×(-5/3)

440/27

ʜᵉⁿᶜᵉ ᶠʳᵒᵐ ᵉᵠⁿ 1

(1/ᵃ^3)+(1/ᵇ^3)=440/343

33 ᵛⁱᵉʷˢ

ʟᵉᵗ ᵃˡᵖʰᵃ=ᵃ , ᵇᵉᵗᵃ=ᵇ.

ᵃ ᵃⁿᵈ ᵇ ᵃʳᵉ ᵗʰᵉ ᶻᵉʳᵒˢ ᵒᶠ 3ˣ^2+5ˣ+7 ,

ᵃ+ᵇ=-5/3………(1)

ᵃ.ᵇ=7/3…………..(2)

1/ᵃ^3+1/ᵇ^3=(1/ᵃ^3.ᵇ^3)[ᵇ^3+ᵃ^3]

=(1/ᵃ^3.ᵇ^3)(ᵃ+ᵇ)(ᵃ^2-ᵃᵇ+ᵇ^2)

=(1/ᵃ^3.ᵇ^3)(ᵃ+ᵇ)[(ᵃ+ᵇ)^2–3ᵃ.ᵇ]

=(3/7)^3.(-5/3)[25/9–3.7/3]

=(27/343)(-5/3)(-38/9)

=(27×5×38)/(343×3×9)

=190/343 , ᴀⁿˢʷᵉʳ

✿◉●•◦

Answered by prasanthnaidu2005
1

X^2 + 7x +7

a=1,b=7 and c=7

(1) alpha ^2 + betha ^2.

(A) since (alpha + betha )=-b/a

(alpha + betha) = -7/1

(alpha + betha)=-7

(alpha + betha)^2=(-b/a)^2

sine alpha +betha = -7

so ,( -7)^2 -2( alpha ×betha)=alpha ^2 + betha ^2.

so 49 - 2(c/a)=. alpha ^2 + betha ^2.

49 - 2(7)=. alpha ^2 + betha ^2.

49-14 =. alpha ^2 + betha ^2

35. =alpha ^2 + betha ^2.

there fore

alpha ^2 + betha ^2. =35

(2) 1/alpha + 1/betha (cross multiplication)

alpha + betha /alpha×betha

so , -b/a. ÷c/a

-7/7

-1

there fore

1/alpha + 1/betha =-1

please mark me as a brianliest.

Similar questions