Math, asked by Rajpoot6394, 1 year ago

if alpha and beta are the zeros of the polynomial x2-2x-15, then form a quadratic polynomial whose zeros are 2alphaand 2beta.

Answers

Answered by saurabh2002
346
since alpha and beta are the zeroes of given polynomial x^2-2x-15
=x^2-2x-15
=x^2-5x+3x-15
=x(x-5)+3(x-5)
=(x-5)(x+3)
=. x=5&x=-3
therefore alpha=5β=-3
according to question
zeroes of other polynomial are alpha' =2alpha & beta'=2beta
therefore alpha'=10 & beta'= -6
polynomial=x^2-(10-6)x+10×-6
=x^2-4x-60
Answered by Sauron
95

Answer:

The new polynomial is x² - 4x - 60

Step-by-step explanation:

Given polynomial = x² - 2x - 15

The given polynomial's zero are = α and β

The new polynomial when zeros are 2α and 2β = ??

In polynomial :

  • a = 1
  • b = -2
  • c = -15

____________________________

Sum of zeros:

\sf{\longrightarrow}\: \alpha + \beta =\dfrac{-b}{a} \\\\\sf{\longrightarrow}\: \alpha + \beta =\dfrac{-(-2)}{1}\\\\\sf{\longrightarrow}\: \alpha + \beta =\dfrac{2}{1}\\\\\sf{\longrightarrow}\: \alpha + \beta =2 \:---(I)\\\\

____________________________

Product of zeros:

\sf{\longrightarrow}\: \alpha \times \beta = \dfrac{c}{a}  \\\\\sf{\longrightarrow}\: \alpha \times \beta = \dfrac{-15}{1} \\\\\sf{\longrightarrow}\: \alpha \times \beta = -15 \: ---(II)

____________________________

For the new polynomial,

\sf{\longrightarrow}\:2\alpha +2\beta \\\\\sf{\longrightarrow}\:2(\alpha +\beta)\\\\\sf{\longrightarrow}\:2(2)\: ---(From\:I)\\\\\sf{\longrightarrow}\:4

The sum of zeros for new polynomial is 4.

\sf{\longrightarrow}\: 2\alpha \times 2\beta \\\\\sf{\longrightarrow}\: 4 \times \alpha\beta \\\\\sf{\longrightarrow}\: 4 \times (-15)\:---(From\:II)\\\\\sf{\longrightarrow}\: -60

The product of zeros for new polynomial is -60.

____________________________

The new polynomial will be =

\sf{\longrightarrow}\: x^{2} - (\alpha +\beta )x + (\alpha \beta )\\\\\sf{\longrightarrow}\: x^{2} - (4 )x + (-60)\\\\\sf{\longrightarrow}\: x^{2} - 4x-60

Therefore, the new polynomial is x² - 4x - 60

Similar questions