Math, asked by krishnasajeev1981, 10 months ago

If alpha and beta are the zeros of the polynomial y 2 - 7y +2. find the quadratic polynomial whose zeros are a1/alpha and 1/beta

Answers

Answered by BrainlyConqueror0901
14

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{2y^{2}-7y+1=0}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given:}} \\ \tt: \implies {y}^{2}-7y+2= 0 \\ \\ \tt: \implies \alpha \: and \: \beta \: are \: zeroes \\ \\ \red{ \underline \bold{To \: Find:}} \\ \tt: \implies Polynomial\:whose\:zeroes\:are\:\frac{1}{\alpha}\:and\:\frac{1}{\beta} = ?

• According to given question :

 \tt \circ \: {y}^{2} -7y +2 = 0 \\ \\ \tt \circ \: \alpha + \beta = \frac{ - b}{a} = {7} \\ \\ \tt \circ \: \alpha \beta = \frac{c}{a} = 2 \\ \\ \bold{For \: sum \: of \: zeroes}

 \tt:  \implies  \frac{1}{ \alpha }  +   \frac{1}{ \beta }  \\  \\ \tt:  \implies  \frac{  \beta  +  \alpha }{ \alpha  \beta }  \\  \\  \green{\tt:  \implies  \frac{7}{2} } \\   \\   \green{\tt \therefore  \frac{1}{ \alpha }  +  \frac{1}{ \beta }   =  \frac{7}{2} } \\ \\  \bold{For \: product \: of \: zeroes} \\ \tt:  \implies  \frac{1}{ \alpha }  \times  \frac{1}{ \beta }  \\  \\ \tt:  \implies \frac{1}{ \alpha  \beta }  \\  \\ \tt:   \green{\implies  \frac{1}{2} }  \\  \\   \green{\tt \therefore  \frac{1}{ \alpha }  \times  \frac{1}{ \beta }  =  \frac{1}{2}} \\  \\  \bold{For \: Quadratic \: eqn} \\ \tt:  \implies  {y}^{2}  -  {(sum \: of \: zeroes})y + ( product \: of \: zeroes)  = 0 \\  \\ \tt:  \implies  {y}^{2}  - ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } )y+  \frac{1}({ \alpha }  \times  \frac{1}{ \beta })  = 0 \\  \\ \tt:  \implies  {y}^{2}  -  \frac{7}{2}y +  \frac{1}{2}  = 0 \\  \\ \tt:  \implies  \frac{2 {y}^{2} - 7y + 1 }{2}  = 0 \\  \\  \green{\tt:  \implies 2 {y}^{2}  - 7y + 1 = 0}

Answered by Anonymous
20

Answer:

\large\boxed{\sf{{y}^{2}  -  \dfrac{7}{2} y +  \dfrac{1}{2} }}

Step-by-step explanation:

Given a quadratic polynomial such that,

 {y}^{2}  - 7y + 2

Also, it's zereos are alpha and beta.

Now, we know that,

Sum of roots = -b/a

Product of roots = c/a

Here, we have,

  • a = 1
  • b = -7
  • c = 2

Therefore, we will get,

  =  > \alpha  +  \beta  =  - ( \frac{ - 7}{1}) \\  \\  =  >  \alpha  +  \beta  = 7

And, also, we have,

 =  >  \alpha  \beta  =  \frac{2}{1}  \\  \\  =  >  \alpha  \beta  = 2

Now, to find the quadratic polynomial having zeroes 1/alpha and 1/beta.

Sum of roots,

 =  >  \frac{1}{  \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha  +  \beta }{ \alpha  \beta }

Substituting the values, we get,

 =  >  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{7}{2}

Therefore, sum of roots = 7/2

Product of roots,

 =  >  \frac{1}{ \alpha }  \times  \frac{1}{ \beta } =  \frac{1}{ \alpha  \beta }

Substituting the values, we get,

 =  >  \frac{1}{ \alpha }  \times  \frac{1}{ \beta }  =  \frac{1}{2}

Now, we know that,

A quadratic polynomial can be written as,

={y}^{2}-(sum\:of\:roots)y+(product\:of\:roots)

Substituting the values, we get,

 =   \bold{{y}^{2}  -  \dfrac{7}{2} y +  \dfrac{1}{2} }

Hence, the required polynomial is \red{{y}^{2}  -  \dfrac{7}{2} y+  \dfrac{1}{2} }

Similar questions