If alpha and beta are the zeros of the quadratic polynomial f(x)= ax²+bx+c, then evaluate alpha/beta + beta/Alpha
Answers
Answer:
(b^2 - 2ac)÷(ac)
Step-by-step explanation:
From this question i.e.,
And we know,
Putting the value of alpha^2 + beta^2 in the given eq. we get,
Answer:
Step-by-step explanation:
( \alpha + \beta ) = \frac{ - b}{a}
( \alpha \times \beta ) = \frac{ c}{a}
From this question i.e.,
\frac{ \alpha }{ \beta } + \frac{ \beta }{ \alpha} = \frac{ \alpha {}^{2} + \beta {}^{2} }{ \alpha \times \beta }
And we know,
\alpha {}^{2} + { \beta }^{2} = ( \alpha + \beta )^{2}- (2 \times \alpha \times \beta) \\
Putting the value of alpha^2 + beta^2 in the given eq. we get,
\frac{b {}^{2} - 2ac }{a {}^{2} } \: \: \geqslant multiplying \: with \: \\ \frac{1}{ \alpha \times \beta } \: i.e. \frac{a}{c} \: \: we \: get \geqslant \\ = > \frac{b {}^{2} - 2ac }{ac}
\frac{b^{2} - 2ac}{ac} \: \: is \: the \: answer >