If alpha and beta are the zeros of the quadratic polynomial f(x)=x^2 - p(x+1)-c, show that (Alfa+ 1) (beta+1) = 1-c
Answers
Answered by
4
x^2 - p(x+1) - c
=x^2 - px - p - c
=x^2 - px -(p+c)
Here,a_1
b_(-p)
c_ -(p+c)
Alpha+ beta =p
Alpha × beta= -(p+c)
(Alpha+1)(beta+1)
(Alpha×beta) + alpha + beta +1
[Substitute the values]
-p-c+p+1.
i.e,1-c
Hence verified,
=x^2 - px - p - c
=x^2 - px -(p+c)
Here,a_1
b_(-p)
c_ -(p+c)
Alpha+ beta =p
Alpha × beta= -(p+c)
(Alpha+1)(beta+1)
(Alpha×beta) + alpha + beta +1
[Substitute the values]
-p-c+p+1.
i.e,1-c
Hence verified,
Similar questions