Math, asked by yashika7454, 9 months ago

if alpha and beta are the zeros of the quadratic polynomial f (x)=X square + X - 2 then find the value of Alpha minus beta ​

Answers

Answered by Ayeshah10
9

Answer:

x2 + x - 2  = 0 \\  \\ x2 + 2x - x - 2 = 0 \\  \\ x(x + 2) - 1(x + 2) = 0 \\  \\ (x + 2) = 0 \:  \:  \: (x - 1) = 0 \\  \\ x =  - 2 \:  \:  \:  \: x = 1 \\  \\  \alpha   =  - 2 \:  \:  \:  \beta  = 1 \\  \\  \\

alpha- beta = -3

My answer is correct so please mark as BRAINLIEST

please mark as BRAINLIEST

Answered by Rohit18Bhadauria
37

Given:

A quadratic polynomial f(x)= x²+x-2 whose zeroes are α and β.

To Find:

  • Value of α-β

Solution:

Given polynomial,f(x)=x²+x-2= x²-(-1)x+(-2)

We know that,

  • \mathrm{a-b=\sqrt{(a+b)^{2}-4ab}}
  • A quadratic polynomial can be expressed as

\boxed{\sf{x^{2}-(Sum\:of\:Zeroes)x+(Product\:of\:Zeroes)}}

So, on comparing given polynomial f(x) with above expression, we get

➺ Sum of Zeroes=α+β= -1

➺ Product of Zeroes=αβ= -2

Now,

\longrightarrow\mathrm{\alpha-\beta=\sqrt{(\alpha+\beta)^{2}-4\alpha\beta}}

\longrightarrow\mathrm{\alpha-\beta=\sqrt{(-1)^{2}-4(-2)}}

\longrightarrow\mathrm{\alpha-\beta=\sqrt{1+8}}

\longrightarrow\mathrm{\alpha-\beta=\sqrt{9}}

\longrightarrow\mathrm{\alpha-\beta=\pm3}

\longrightarrow\mathrm\pink{\alpha-\beta=3,-3}

Hence, the values of α-β are 3 and -3.

Similar questions