if alpha and beta are the zeros of the quadratic polynomial 5 y square - 7y + 1 then find the value of one by Alpha square plus one by beta square
Answers
Answer:
Step-by-step explanation:
5y^2-7y+1=0
alpha+beta=7/5--(1)
alpha*beta=1/5--(2)
find (1/alpha^2)+(1/beta^2)
beta^2+alpha^2/(alpha^2*beta^2)
squaring (1)
alpha^2+beta^2+2alphabeta=49/25
alpha^2+beta^2=49/25-2*(1/5)
=49/25-2/5
=49-10/25
=39/25
find
(39/25)/(1/25)=39
Given: 5y²-7y+1=0
find:1/alpha²+1/beta²
Solution: 5y²-7y+1=0
Comparing the above equation with
ax²+bx+c=0......... (Standard form of quadratic equation)
therefore,
a=5, b=-7 and c=1
alpha +beta=-b/a=-(-7) /5=7/5........(1)
alpha×beta=c/a=1/5 ........... (2)
1/alpha²+1/beta².........(To find)
therefore, beta²+alpha/alpha²×beta²
=(alpha+beta) ²-2×alpha×beta/alpha²×beta²
therefore, by substituting the values from (1)&(2)
=49/25-2/5
______________
(alpha×beta) ²
=49-10/25
_________
1/25
=39/25
________
1/25
=39/25×25
=39
Therefore,
1/alpha²+1/beta²=39