Math, asked by rejani82, 11 months ago

if alpha and beta are the zeros of the quadratic polynomial X square + 5 x minus 5 then (a) alpha + beta is equal to Alpha Beta (b) alpha-beta = alpha beta ​

Answers

Answered by mysticd
1

 Compare \:x^{2} + 5x - 5 \:with\:ax^{2}+bx+c ,\\we \:get

 a = 1 , b = 5 \:and \: -5

 \alpha \:and \:\beta \:are \: two \: zeroes \:of \\given \: polynomial

 i) sum \:of \: the \: zeroes = \frac{-b}{a}

 \implies \alpha + \beta = \frac{-5}{1}

 \implies \alpha + \beta = -5\: --(1)

 ii) product \:of \: the \: zeroes = \frac{-b}{a}

 \implies \alpha  \beta = \frac{-5}{1}

 \implies \alpha  \beta = -5\: --(2)

/* From (1) and (2), we conclude that */

a) \green {\alpha + \beta = \alpha  \beta}

 b) ( \alpha - \beta)^{2} \\= ( \alpha + \beta)^{2} - 4\alpha \beta \\= (-5)^{2} - 4 \times (-5) \\= 25 + 20 \\= 45

 Now, \red{ (\alpha - \beta) } = \sqrt{45} \\= \sqrt{3^{2} \times 5 } \\\green { = 3\sqrt{5}}

Therefore.,

a) \green {\alpha + \beta = \alpha  \beta}

 b) \red{ (\alpha - \beta) }\green {=3\sqrt{5}} \pink {\neq}{ \alpha \beta }

•••♪

Similar questions