Math, asked by nitindaswani771, 10 months ago

If alpha and beta are the zeros of the quadratic polynomial x square - 4 x + 3 find the value of

Answers

Answered by hearthacker54
7

Answer:

Given: α,β are zeroes of the polynomial 4x2+3x+7

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1From the given quadratic equation,

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1From the given quadratic equation,α+β=−43 and αβ=47

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1From the given quadratic equation,α+β=−43 and αβ=47Therefore, 

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1From the given quadratic equation,α+β=−43 and αβ=47Therefore, α1+β1=αβα+β

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1From the given quadratic equation,α+β=−43 and αβ=47Therefore, α1+β1=αβα+β=47−43=−73

Given: α,β are zeroes of the polynomial 4x2+3x+7To find the value of α1+β1From the given quadratic equation,α+β=−43 and αβ=47Therefore, α1+β1=αβα+β=47−43=−73⇒α1+β1=−73

here is your answer mate mark as brainliest

Answered by maddulamounika111
1

Answer:Given that,

x²-4x+3=0 is the polynomial.

And α ,β are the zeroes of the polynomial..

α1+β1=αβ/α+β

Sum of the roots =α+β=-b/a

α+β=-(-4)/1=4

Product of the roots ,=αβ=c/a

αβ=3/1=3

So,α1+β1=αβ/α+β

=3/4

Step-by-step explanation:

Hope it helps u frnd....

Similar questions