Math, asked by fathimaaman804, 8 months ago

if alpha and beta are the zeros of the quadratic polynomial f x is equal to x square - 2 x minus 8 then find the value of Alpha square minus beta square​

Answers

Answered by anupriya2311
2

Step-by-step explanation:

α + ß = -(b/a) = -(-2) = 2

αß = (c/a) = (-8)

we have to find : α²- ß²

Ans:

α²- ß² = (α+ß)²- 2αß

= (2)² - 2×(-8)

= 4 - (-16)

=20

Answered by SarcasticL0ve
5

GivEn:

  • \sf \alpha\;and\;\beta are the zeros of the quadratic polynomial f(x) = \sf x^2 - 2x - 8.

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Value of \sf \alpha^2 - \beta^2.

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

GivEn that,

\sf \star\; f(x) = x^2 - 2x - 8

⠀⠀⠀⠀⠀⠀⠀

where,

  • a = 1
  • b = -2
  • c = -8

⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀

★ Sum of zeros, \sf ( \alpha + \beta ) = \dfrac{-b}{a}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf - \dfrac{-2}{1} = \bf{2}

⠀⠀⠀⠀⠀⠀⠀

★ Product of zeros, \sf ( \alpha \beta ) = \dfrac{c}{a}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{-8}{1} = \bf{-8}

━━━━━━━━━━━━━━━

Therefore,

★ Value of \sf \alpha^2 - \beta^2 is,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf ( \alpha + \beta )^2 - 2 \alpha \beta\;\;\;\;\;\;\;\bigg\lgroup\bf ( \alpha + \beta )^2 = { \alpha}^2 + { \beta}^2 + 2 \alpha \beta \bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;\small\sf \underline{Putting\;values\;:}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf (2)^2 - 2 \times -8

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 4 + 16

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\bf{\pink{20}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore Hence, The value of \sf \alpha^2 - \beta^2 is 20.

Similar questions